插值算法

最近看了一些图像插值的算法,比如biqubic 跟 bilinear 

我最初的想法是:加入我要从8*8 的图片插值到16*16 的图片。我首先要做的是我先有有个16*16 的全是0的矩阵,然后把8*8的像素值插值到16*16的角上,这样在1,3,5。。。。行和1,3,5 。。。列都有一个数值,这样我可以利用 biqubic 和 bilinerar 插值中间的像素 然后在插值1/4 的像素。

今天早上在网上下到一段 biqubic 的代码。感觉这个代码要比我自己写的权威。所以在这里我们就分析一下这段代码。

clc,clear;
f1 = 100*rand(8,8);
f = uint8(f1);
k = 2;      %设置放大倍数
%将待插值图像矩阵前后各扩展两行两列,共扩展四行四列
a = f(1,:);
c = f(8,:);  
b = [f(1,1),f(1,1),f(:,1)',f(8,1),f(8,1)];
d = [f(1,8),f(1,8),f(:,8)',f(8,8),f(8,8)];
a1 = [a;a;f;c;c];
b1 = [b;b;a1';d;d];
f2 = b1';
f1 = double(f2);
g1 = zeros(k*8,k*8);
for i = 1:k*8         %利用双三次插值公式对像素赋值
    u = rem(i,k)/k;
    i1 = floor(i/k)+2;
    A = [sw(1+u) sw(u) sw(1-u) sw(2-u)];   
    for j = 1:k*8
        v = rem(j,k)/k;
        j1 = floor(j/k)+2;
        C = [sw(1+v);sw(v);sw(1-v);sw(2-v)];
        B = [f1(i1-1,j1-1) f1(i1-1,j1) f1(i1-1,j1+1) f1(i1-1,j1+2)
             f1(i1,j1-1)   f1(i1,j1)   f1(i1,j1+1)   f1(i1,j1+2)
             f1(i1+1,j1-1) f1(i1+1,j1) f1(i1+1,j1+1) f1(i1+1,j1+2)
             f1(i1+2,j1-1) f1(i1+2,j1) f1(i1+2,j1+1) f1(i1+2,j1+2)];
    g1(i,j) = (A * B * C);
	end
end
g=uint8(g1);

%第二次插值,实现1/4插值点
k = 2;
%将待插值图像矩阵前后各扩展两行两列,共扩展四行四列
aa = g(1,:);
cc = g(16,:);  
bb = [g(1,1),g(1,1),g(:,1)',g(16,1),g(16,1)];
dd = [g(1,16),g(1,16),g(:,16)',g(16,16),g(16,16)];
aa1 = [aa;aa;g;cc;cc];
bb1 = [bb;bb;aa1';dd;dd];
ff2 = bb1';
ff1 = double(ff2);
gg1 = zeros(k*16,k*16);
for i = 1:k*16         %利用双三次插值公式对像素赋值
    u = rem(i,k)/k;
    i1 = floor(i/k)+2;
    A = [sw(1+u) sw(u) sw(1-u) sw(2-u)];   
    for j = 1:k*16
        v = rem(j,k)/k;
        j1 = floor(j/k)+2;
        C = [sw(1+v);sw(v);sw(1-v);sw(2-v)];
        B = [ff1(i1-1,j1-1) ff1(i1-1,j1) ff1(i1-1,j1+1) ff1(i1-1,j1+2)
             ff1(i1,j1-1)   ff1(i1,j1)   ff1(i1,j1+1)   ff1(i1,j1+2)
             ff1(i1+1,j1-1) ff1(i1+1,j1) ff1(i1+1,j1+1) ff1(i1+1,j1+2)
             ff1(i1+2,j1-1) ff1(i1+2,j1) ff1(i1+2,j1+1) ff1(i1+2,j1+2)];
    gg1(i,j) = (A * B * C);
	end
end
gg=uint8(gg1);
上面的代码没弄明白为什么要这样,我自己感觉自己的思路还是很对的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值