第4章 Polya定理
4.1 群的概念
4.1.1 群的定义
给定一个集合 G = { a , b , c , ⋯ } G=\{a,b,c,\cdots\} G={a,b,c,⋯}和集合 G G G上的二元运算“ ⋅ \cdot ⋅”,并满足下列4个条件:
-
封闭性:若 a , b ∈ G a,b \in G a,b∈G,则存在 c ∈ G c \in G c∈G,使得,
a ⋅ b = c a \cdot b=c a⋅b=c -
结合律:对于任意的 a , b , c ∈ G a,b,c \in G a,b,c∈G,恒有
( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) (a \cdot b) \cdot c = a \cdot (b \cdot c) (a⋅b)⋅c=a⋅(b⋅c) -
存在单位元素: G G G中存在一个元素 e e e,使得对于 G G G的任意元素 a a a,恒有
a ⋅ e = e ⋅ a = a a \cdot e = e \cdot a = a a⋅e=e⋅a=a -
存在逆元素:对于 G G G的任意元素 a a a,恒有一个 b ∈ G b \in G b∈G,使得
a ⋅ b = b ⋅ a = e a \cdot b = b \cdot a = e a⋅b=b⋅a=e
元素 b b b称为元素 a a a的逆元素,记作 a − 1 a^{-1} a−1,即
b = a − 1 b= a^{-1} b=a−1
则称集合 G G G在运算 ⋅ \cdot ⋅之下是一个群,有时也称 G G G是一个群, G G G中元素 a a a对 b b b的运算 a ⋅ b a \cdot b a⋅b,可以简记为 a b ab ab。
例题: G = { 1 , − 1 } G=\{1,-1\} G={1,−1}在乘法运算下是一个群。
解:(1)封闭性:(1)(-1)=-1,(1)(1)=1,(-1)(1)=-1,(-1)(-1)=1
(2)结合性:显然
(3)单位元素: e = 1 e=1 e=1
(4)逆元素:由于(1)(1)=1,(-1)(-1)=1,故 ( − 1 ) − 1 = − 1 , ( 1 ) − 1 = 1 (-1)^{-1}=-1,(1)^{-1}=1 (−1)−1=−1,(1)−1=1
群的元素个数是有限的,称为有限群。有限群 G G G的元素个数叫做群的阶,记为 ∣ G ∣ |G| ∣G∣。当群的元素为无限时,称为无限群。
若群 G G G的任意二元素 a , b a,b a,b恒满足 a b = b a ab=ba ab=ba时,称 G G G为交换群或Abel群。
4.1.2 群的性质
- 群的单位元是唯一的。
- a b = a c ⇒ b = c , b a = c a ⇒ b = c ab=ac \Rightarrow b=c,ba=ca \Rightarrow b=c ab=ac⇒b=c,ba=ca⇒b=c
- G G G中每一个元素的逆元素是唯一的。
- ( a b c ⋯ l m n ) − 1 = n − 1 m − 1 l − 1 ⋯ c − 1 b − 1 a − 1 (abc \cdots lmn)^{-1}=n^{-1}m^{-1}l^{-1} \cdots c^{-1}b^{-1}a^{-1} (abc⋯lmn)−1=n−1m−1l−1⋯c−1b−1a−1
- …
设 G G G是群, H H H是 G G G的子集,若 H H H在 G G G的原来定义的运算下也成群,则称 H H H是 G G G的子群。
4.2 置换群
置换群是十分重要的群,特别是所有的有限群都可以用它来表示。
不失一般性,假定
n
n
n个元素为
1
,
2
,
.
.
.
,
n
1,2,...,n
1,2,...,n。若元素
1
1
1被
1
1
1到
n
n
n中某一整数
a
1
a_1
a1所取代,
2
2
2被其中的
a
2
a_2
a2元素所取代,…,
n
n
n被
a
n
a_n
an所取代,且
a
i
≠
a
j
,若
i
≠
j
,
i
,
j
≠
1
,
2
,
⋯
,
n
a_i \neq a_j,若i \neq j,i,j \neq 1,2,\cdots,n
ai=aj,若i=j,i,j=1,2,⋯,n
用
p
=
(
1
2
3
⋯
n
a
1
a
2
a
3
⋯
a
n
)
p =\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ a_1 & a_2 & a_3 & \cdots & a_n \end{pmatrix}\\
p=(1a12a23a3⋯⋯nan)
来表示。
置换群的定义为:设
p
1
=
(
1
2
3
4
3
1
2
4
)
,
p
2
=
(
1
2
3
4
4
3
2
1
)
p_1 =\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}, p_2 =\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}
p1=(13213244),p2=(14233241)
p 1 p 2 = ( 1 2 3 4 3 1 2 4 ) ( 1 2 3 4 4 3 2 1 ) = ( 1 2 3 4 3 1 2 4 ) ( 3 1 2 4 2 4 3 1 ) = ( 1 2 3 4 2 4 3 1 ) p_1p_2 =\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \\ =\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}\begin{pmatrix} 3 & 1 & 2 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \\ =\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} p1p2=(13213244)(14233241)=(13213244)(32142341)=(12243341)
先做
p
1
p_1
p1的置换,再作
p
2
p_2
p2的置换:
1
⟶
p
1
3
⟶
p
2
2
2
⟶
p
1
1
⟶
p
2
4
3
⟶
p
1
2
⟶
p
2
3
4
⟶
p
1
4
⟶
p
2
1
1 \stackrel{p_1} {\longrightarrow} 3 \stackrel{p_2} {\longrightarrow} 2 \\ 2 \stackrel{p_1} {\longrightarrow} 1 \stackrel{p_2} {\longrightarrow} 4 \\ 3 \stackrel{p_1} {\longrightarrow} 2 \stackrel{p_2} {\longrightarrow} 3 \\ 4 \stackrel{p_1} {\longrightarrow} 4 \stackrel{p_2} {\longrightarrow} 1 \\
1⟶p13⟶p222⟶p11⟶p243⟶p12⟶p234⟶p14⟶p21
简单来说就是先经过了
p
1
p_1
p1的映射再经过了
p
2
p_2
p2的映射。
循环节数:
(
1
2
3
4
5
3
5
1
4
2
)
=
(
13
)
(
25
)
(
4
)
\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}=(13)(25)(4)
(1325314452)=(13)(25)(4)
1置换为3,同时3又能置换为1,这就是一个循环。4置换为4本身,这也算一个循环。左右两个表示是等价的,从后面的表示可以清楚的看到每个循环,以及循环节的个数。
4.3 Polya定理
设
G
‾
\overline{G}
G是
n
n
n个对象的一个置换群,用
m
m
m种颜色涂染这
n
n
n个对象,则不同染色的方案数为
l
=
1
∣
G
‾
∣
[
m
c
(
a
1
‾
)
+
m
c
(
a
2
‾
)
+
⋯
+
m
c
(
a
g
‾
)
]
l=\frac{1}{|\overline{G}|}[m^{c(\overline{a_1})}+m^{c(\overline{a_2})}+\cdots+m^{c(\overline{a_g})}]
l=∣G∣1[mc(a1)+mc(a2)+⋯+mc(ag)]
其中,
G
‾
=
{
a
1
‾
,
a
2
‾
,
⋯
,
a
g
‾
}
\overline{G}=\{\overline{a_1},\overline{a_2},\cdots,\overline{a_g}\}
G={a1,a2,⋯,ag},
c
(
a
k
‾
)
c(\overline{a_k})
c(ak)为置换
a
k
‾
\overline{a_k}
ak的循环节数。
n n n个对象可用 1 , 2 , . . . , n 1,2,...,n 1,2,...,n编号,故 G ‾ \overline{G} G可当作 ( 1 , 2 , ⋯ , n ) (1,2,\cdots,n) (1,2,⋯,n)的一个置换群。
例题:用2种颜色去染排成一个环的6个棋子,如果通过旋转得到则只算一种,一共有多少种染色方案?
解:典型的满足polya公式的条件,
m
=
2
m=2
m=2,
n
=
6
n=6
n=6。因为是旋转得到的置换,所以存在6个置换(自己置换到自己也算)。
(
1
2
3
4
5
6
2
3
4
5
6
1
)
=
(
123456
)
\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6\\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}=(123456)
(122334455661)=(123456)
( 1 2 3 4 5 6 3 4 5 6 1 2 ) = ( 135 ) ( 246 ) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6\\ 3 & 4 & 5 & 6 & 1 & 2 \end{pmatrix}=(135)(246) (132435465162)=(135)(246)
( 1 2 3 4 5 6 4 5 6 1 2 3 ) = ( 14 ) ( 25 ) ( 36 ) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6\\ 4 & 5 & 6 & 1 & 2 & 3\end{pmatrix}=(14)(25)(36) (142536415263)=(14)(25)(36)
( 1 2 3 4 5 6 5 6 1 2 3 4 ) = ( 153 ) ( 246 ) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6\\ 5 & 6 & 1 & 2 & 3 & 4 \end{pmatrix}=(153)(246) (152631425364)=(153)(246)
( 1 2 3 4 5 6 6 1 2 3 4 5 ) = ( 165432 ) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6\\ 6 & 1 & 2 & 3 & 4 & 5\end{pmatrix}=(165432) (162132435465)=(165432)
( 1 2 3 4 5 6 1 2 3 4 5 6 ) = ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6\\ 1 & 2 & 3 & 4 & 5 & 6\end{pmatrix}=(1)(2)(3)(4)(5)(6) (112233445566)=(1)(2)(3)(4)(5)(6)
每个置换的循环节已经标出了。所以根据polya定理公式可以算出,染色方案数为 1 6 ( 2 1 + 2 2 + 2 3 + 2 2 + 2 1 + 2 6 ) = 14 \frac{1}{6}(2^1+2^2+2^3+2^2+2^1+2^6)=14 61(21+22+23+22+21+26)=14。
例题:一个3×3的方格,用10种颜色给每个格子染色,旋转0度、90度、180度、270度后相同的算成相同,问总共有多少种方案?
解:
- 旋转0度:(1)(2)(3)(4)(5)(6)(7)(8)(9)
- 旋转90度:(3179)(6248)(5)
- 旋转180度:(19)(28)(37)(46)(5)
- 旋转270度:(7931)(4862)(5)
所以根据Polya定理,总方案数就是 1 4 ( 1 0 9 + 1 0 3 + 1 0 5 + 1 0 3 ) \frac{1}{4}(10^9+10^3+10^5+10^3) 41(109+103+105+103)。
例题:正六面体的6个面分别用红蓝两种颜色着色,问有多少种方案?
解:使正六面体重合的刚体运动群,有如下几种情况:
- 不动置换(1)(2)(3)(4)(5)(6),格式为 ( 1 ) 6 (1)^6 (1)6,只有1种。
- 绕过面1-面6中心的AB轴旋转90度,对应有(1)(2345)(6),旋转-90度,对应有(1)(5432)(6),格式为 ( 1 ) 2 ( 4 ) 1 (1)^2(4)^1 (1)2(4)1,正六面体有3个对面,故同类的置换有6个。
- 绕AB轴旋转180度,对应有(1)(24)(35)(6),格式为 ( 1 ) 2 ( 2 ) 2 (1)^2(2)^2 (1)2(2)2,同类置换有3个。
- 绕CD轴(棱中-棱中)旋转180度的置换为(16)(25)(34),格式为 ( 2 ) 3 (2)^3 (2)3,正六面体中对角线位置的平行的棱有6对,故同类的置换有6个。
- 绕正六面体的对角线EF(顶点-顶点)旋转120度,对应有(346)(152),旋转-120度,对应有(643)(251),格式为 ( 3 ) 2 (3)^2 (3)2,正六面体的对角线有4条,故同类的置换有8个。
根据polya定理,不同的颜色方案为
M
=
1
24
(
2
6
+
6
⋅
2
3
+
3
⋅
2
4
+
6
⋅
2
3
+
8
⋅
2
2
)
=
1
24
(
64
+
48
+
48
+
48
+
32
)
=
10
M=\frac{1}{24}(2^6+6\cdot2^3+3\cdot2^4+6\cdot2^3+8\cdot2^2) \\ =\frac{1}{24}(64+48+48+48+32) = 10
M=241(26+6⋅23+3⋅24+6⋅23+8⋅22)=241(64+48+48+48+32)=10
一种简单的推广:用
m
m
m种颜色对正六面体的6个面着色可得不同的方案数
M
M
M,根据polya定理,
M
=
1
24
(
m
6
+
6
⋅
m
3
+
3
⋅
m
4
+
6
⋅
m
3
+
8
⋅
m
2
)
M=\frac{1}{24}(m^6 + 6 \cdot m^3 + 3 \cdot m^4 + 6 \cdot m^3 + 8 \cdot m^2)
M=241(m6+6⋅m3+3⋅m4+6⋅m3+8⋅m2)
例题:用2种颜色给正6面体的8个顶点着色,有多少种方案?
解:
- 不动置换(1)(2)(3)(4)(5)(6)(7)(8),格式为 ( 1 ) 8 (1)^8 (1)8,只有1种。
- 绕x轴,旋转90度的置换为(1234)(5678),旋转-90度的置换为(4321)(8765),格式为 ( 4 ) 2 (4)^2 (4)2,正六面体对面有3对,故同类置换有6个。
- 绕x轴,旋转180度的置换为(13)(24)(57)(68),格式为 ( 2 ) 4 (2)^4 (2)4,正六面体对面有3对,故同类置换有3个。
- 绕y轴,旋转180度的置换为(17)(35)(28)(46),格式为 ( 2 ) 4 (2)^4 (2)4,正六面体有12条棱,6对棱,故同类置换有6个。
- 绕z轴,旋转120度的置换为(136)(2)(457)(8),旋转-120度的置换为(631)(754),格式为 ( 3 ) 2 (3)^2 (3)2,正六面体有4条对角线,故同类置换为8个。
根据polya定理,不同的着色方案为,
M
=
1
24
(
2
8
+
6
⋅
2
2
+
3
⋅
2
4
+
6
⋅
2
4
+
8
⋅
2
4
)
=
1
24
(
256
+
24
+
48
+
96
+
128
)
=
552
24
=
23
M=\frac{1}{24}(2^8 + 6 \cdot 2^2 + 3 \cdot 2^4 + 6 \cdot 2^4 + 8 \cdot 2^4) \\ =\frac{1}{24}(256+24+48+96+128)=\frac{552}{24}=23
M=241(28+6⋅22+3⋅24+6⋅24+8⋅24)=241(256+24+48+96+128)=24552=23
例题:一个正6面体的6个面用g,r, b, y四种颜色涂染,求其中两个面用色g,两个面用色y, 其余一面用b, 一面用r的方案数。
解:再次看这个图
分类讨论 | 旋转方式 | 置换群 | 格式 | 同类置换个数 |
---|---|---|---|---|
1 | 不动置换 | (1)(2)(3)(4)(5)(6) | ( 1 ) 6 (1)^6 (1)6 | 1 |
2 | 绕AB旋转90度和-90度 | (1)(2345)(6)和(1)(5432)(6) | ( 1 ) 2 ( 4 ) (1)^2(4) (1)2(4) | 2×3=6 |
3 | 绕AB旋转180度 | (1)(24)(35)(6) | ( 1 ) 2 ( 2 ) 2 (1)^2(2)^2 (1)2(2)2 | 3 |
4 | 绕CD旋转180度 | (16)(34)(25) | ( 2 ) 3 (2)^3 (2)3 | 6 |
5 | 绕EF旋转120度和-120度 | (125)(346)和(521)(643) | ( 3 ) 2 (3)^2 (3)2 | 2×4=8 |
由母函数形式的polya定理可得
L
=
1
24
[
(
g
+
r
+
b
+
y
)
6
+
6
(
g
+
r
+
b
+
y
)
2
(
g
4
+
r
4
+
b
4
+
y
4
)
+
3
(
g
+
r
+
b
+
y
)
2
(
g
2
+
r
2
+
b
2
+
y
2
)
2
+
6
(
g
2
+
r
2
+
b
2
+
y
2
)
3
+
8
(
g
3
+
r
3
+
b
3
+
y
3
)
2
]
L=\frac{1}{24}[(g+r+b+y)^6+6(g+r+b+y)^2(g^4+r^4+b^4+y^4)+3(g+r+b+y)^2(g^2+r^2+b^2+y^2)^2+6(g^2+r^2+b^2+y^2)^3+8(g^3+r^3+b^3+y^3)^2]
L=241[(g+r+b+y)6+6(g+r+b+y)2(g4+r4+b4+y4)+3(g+r+b+y)2(g2+r2+b2+y2)2+6(g2+r2+b2+y2)3+8(g3+r3+b3+y3)2]
所求方案数即
g
2
r
b
y
2
g^2rby^2
g2rby2的系数,故方案数为
1
24
(
C
6
2
C
4
2
C
2
1
C
1
1
+
3
C
2
1
C
1
1
C
2
1
C
1
1
)
=
192
24
=
8
\frac{1}{24}(C_6^2C_4^2C_2^1C_1^1+3C_2^1C_1^1C_2^1C_1^1)=\frac{192}{24}=8
241(C62C42C21C11+3C21C11C21C11)=24192=8
例题:一个正八面体,用红蓝两色对6个顶点进行着色;用黄绿两种颜色对八个面进行染色,试求其中4个顶点为红色,两个顶点为蓝色,黄和绿的面各四面的方案数。
解:
分类讨论 | 旋转方式 | 格式 | 同类置换个数 |
---|---|---|---|
1 | 不动置换 | ( 1 ) 6 (1)^6 (1)6- ( 1 ) 8 (1)^8 (1)8 | 1 |
2 | 绕AB旋转90度和-90度 | ( 1 ) 2 ( 4 ) (1)^2(4) (1)2(4)- ( 4 ) 2 (4)^2 (4)2 | 2×3=6 |
3 | 绕AB旋转180度 | ( 1 ) 2 ( 2 ) 2 (1)^2(2)^2 (1)2(2)2- ( 2 ) 4 (2)^4 (2)4 | 3 |
4 | 绕CD旋转180度 | ( 2 ) 3 (2)^3 (2)3- ( 2 ) 4 (2)^4 (2)4 | 6 |
5 | 绕EF旋转120度和-120度 | ( 3 ) 2 (3)^2 (3)2- ( 1 ) 2 ( 3 ) 2 (1)^2(3)^2 (1)2(3)2 | 2×4=8 |
根据母函数形式的polya定理,染色方案枚举:
P
(
r
,
b
,
y
,
g
)
=
1
24
[
(
r
+
b
)
6
(
y
+
g
)
8
+
6
(
r
+
b
)
2
(
r
4
+
b
4
)
(
y
4
+
g
4
)
2
+
3
(
r
+
b
)
2
(
r
2
+
b
2
)
2
(
y
2
+
g
2
)
4
+
6
(
r
2
+
b
2
)
3
(
y
2
+
g
2
)
4
+
8
(
r
3
+
b
3
)
2
(
y
+
g
)
2
(
y
3
+
g
3
)
2
]
P(r,b,y,g)=\frac{1}{24}[(r+b)^6(y+g)^8+6(r+b)^2(r^4+b^4)(y^4+g^4)^2+3(r+b)^2(r^2+b^2)^2(y^2+g^2)^4+6(r^2+b^2)^3(y^2+g^2)^4+8(r^3+b^3)^2(y+g)^2(y^3+g^3)^2]
P(r,b,y,g)=241[(r+b)6(y+g)8+6(r+b)2(r4+b4)(y4+g4)2+3(r+b)2(r2+b2)2(y2+g2)4+6(r2+b2)3(y2+g2)4+8(r3+b3)2(y+g)2(y3+g3)2]
其中
r
4
b
2
y
4
g
4
r^4b^2y^4g^4
r4b2y4g4的系数即为所求方案数:
1
24
[
C
6
4
C
2
2
C
8
4
C
4
4
+
6
⋅
C
2
2
C
1
1
C
2
1
C
1
1
+
3
⋅
(
C
2
2
C
2
1
+
C
2
2
C
2
2
)
C
4
2
C
2
2
+
6
⋅
C
3
2
C
1
1
C
4
2
C
2
2
+
8
⋅
0
]
=
1
24
[
15
×
70
+
6
×
2
+
3
×
(
2
+
1
)
×
6
+
6
×
3
×
6
+
0
]
=
1
24
(
1024
+
12
+
54
+
108
)
=
1224
24
=
51
\frac{1}{24}[C_6^4C_2^2C_8^4C_4^4+6\cdot C_2^2C_1^1C_2^1C_1^1+3\cdot(C_2^2C_2^1+C_2^2C_2^2)C_4^2C_2^2+6\cdot C_3^2C_1^1C_4^2C_2^2+8\cdot0] =\frac{1}{24}[15\times70+6\times2+3\times(2+1)\times6+6\times3\times6+0] =\frac{1}{24}(1024+12+54+108) =\frac{1224}{24} =51
241[C64C22C84C44+6⋅C22C11C21C11+3⋅(C22C21+C22C22)C42C22+6⋅C32C11C42C22+8⋅0]=241[15×70+6×2+3×(2+1)×6+6×3×6+0]=241(1024+12+54+108)=241224=51