算法导论-第17章-摊还分析

本章主要设计理论分析,感觉第3版讲的不是很好(也有可能是翻译的语句不通顺),这里搬运了知乎上的文章。

  • https://zhuanlan.zhihu.com/p/536470404
  • https://zhuanlan.zhihu.com/p/577232877
  • https://zhuanlan.zhihu.com/p/577594781
  • https://zhuanlan.zhihu.com/p/577826672

本章前三节将介绍三种在摊还分析中最常用的方法。16.1 节将介绍聚合分析(aggregate analysis)。16.2 节将介绍核算法(accounting method)。16.3 节将介绍势能法(potential method)。

每个方法都将用两个例子进行测试,一个例子是具有 MULTIPOP 操作的栈,另一个例子是具有 INCREMENT 操作的二进制计数器。

摊还分析可以帮助我们深入理解数据结构,也可以帮助我们优化数据结构设计。

16.1 聚合分析

聚合分析(aggregate analysis):一个有 n n n 个操作的序列运行时间为 T ( n ) T(n) T(n) ,在最坏情况下,每个操作的平均开销(average cost)或者摊还开销(amortized cost)为 T ( n ) / n T(n)/n T(n)/n

评:因为总的摊还开销与总的实际开销渐近相等,所以每一个操作的摊还开销可以先求总开销再求平均开销。

栈操作(Stack operations)

栈有PUSH(S, x)POP(S)的操作,运行时间均为 O ( 1 ) \Omicron(1) O(1)

现在增加一个MULTIPOP(S, k)操作,能够删除栈 S S S 顶的 k k k 个对象,伪代码如下:

MULTIPOP(S, k)
    while not STACK-EMPTY(S) and k > 0
        POP(S)
        k = k - 1

如果对有 s s s 个对象的栈 S S S 执行 MULTIPOP(S, k) 操作,运行时间为 O ( m i n { s , k } ) \Omicron(min\{s, k\}) O(min{s,k})

下面分析一个由 n n nPUSHPOPMULTIPOP操作组成的操作序列在一个空栈上的执行情况。开销至多是 O ( n ) \Omicron(n) O(n) ,虽然MULTIPOP操作最坏情况下开销为 O ( n ) \Omicron(n) O(n) ,但是操作序列中一个操作的平均开销或摊还开销为 O ( n ) / n = O ( 1 ) \Omicron(n)/n=\Omicron(1) O(n)/n=O(1)

二进制计数器自增(Incrementing a binary counter)

一个 k k k 位二进制计数器自增问题。计数器初始值为 0 ,用比特位数组 A [ 0.. k − 1 ] A[0..k-1] A[0..k1] 表示计数器。当计数器保存二进制数 x x x 时, x x x 的最低位保存在 A [ 0 ] A[0] A[0] x x x 的最高位保存在 A [ k − 1 ] A[k−1] A[k1] x = ∑ i = 0 k − 1 A [ i ] ⋅ 2 i x=\sum_{i=0}^{k-1}A[i] \cdot 2^i x=i=0k1A[i]2iINCREMENT(A, k) 操作的伪代码如下:

INCREMENT(A, k)
    i = 0
    while i < k and A[i] == 1
        A[i] = 0
        i = i + 1
    if i < k
        A[i] = 1

Figure 16.2

对于一个初始值为 0 的计数器,执行一个由 n n nINCREMENT 操作组成的序列, A [ i ] A[i] A[i] 会翻转 ⌊ n / 2 i ⌋ ⌊n/2^i⌋ n/2i 次,其中 i = 0 , 1 , ⋯   , k − 1 i=0, 1, \cdots, k−1 i=0,1,,k1 ,所有比特位翻转次数总计为:
∑ i = 0 k − 1 ⌊ n 2 i ⌋ < n ∑ i = 0 ∞ 1 2 i = 2 n = O ( n ) \sum_{i=0}^{k-1}\lfloor \frac{n}{2^i} \rfloor \lt n \sum_{i=0}^{\infty} \frac{1}{2^i} =2n =\Omicron(n) i=0k12in<ni=02i1=2n=O(n)
即执行一个由 n n n 个 INCREMENT 操作组成的序列最坏情况下运行时间为 O ( n ) \Omicron(n) O(n),每个操作的平均开销或摊还开销为 O ( n ) / n = O ( 1 ) \Omicron(n)/n=\Omicron(1) O(n)/n=O(1)

17.2 核算法

核算法(accounting method):我们给不同的操作分配不同的费用(charge),某些操作的费用可能多于或少于其实际开销(actual cost)。我们将给一个操作分配的费用称为摊还开销(amortized cost)。当某个操作的摊还开销超出其实际开销,我们计算盈余差额(difference),并记录在数据结构的特定对象中,这些差额称为信用(credit)。当某个操作的摊还开销小于其实际开销,我们计算亏欠差额(difference),可以用信用来支付亏欠差额。也就是每个操作的摊还开销可以被分解为实际开销和信用(存入的或者用掉的)。

评:核算法把摊还分析模拟成记账了,amortized 翻译成摊还确实比较合适。信用是不需要提供物资保证,不立即支付现金,而凭信任所进行的,如信用贷款和信用卡透支。

核算法与聚合分析的区别:

  • 核算法中不同操作的摊还开销可能不同。
  • 聚合分析中不同操作的摊还开销相同。

我们必须谨慎分配每个操作的摊还开销,一个有 n n n 个操作的序列,第 i i i 个操作的实际开销为 c i c_i ci ,摊还开销为 c ^ i \hat c_i c^i ,有
∑ i = 1 n c ^ i ≥ ∑ i = 1 n c i \sum_{i=1}^n \hat c_i \ge \sum_{i=1}^n c_i i=1nc^ii=1nci
数据结构中记录的信用为 ∑ i = 1 n c ^ i − ∑ i = 1 n c i \sum_{i=1}^n \hat c_i - \sum_{i=1}^n c_i i=1nc^ii=1nci,我们要保证信用始终非负。

评:保证信用始终非负即保证操作序列的摊还开销是操作序列的实际开销的渐近上界。由于摊还开销求得是实际开销的渐近界,所以操作序列执行过程中就可以按照渐近界处理了。

栈操作(Stack operations)

栈操作的实际开销和摊还开销:

operationactual costamortized cost
PUSH12
POP10
MULTIPOPmin{s, k}0

在设定每个操作的摊还开销时, PUSH相当于存款,信用增加, POPMULTIPOP相当于取款,信用减少。

评:可以通过栈中对象增加或者减少的数量来计算摊还开销。

  • 对于每次 PUSH 操作,栈中增加 1 个对象,所以其 c ^ − c = 1 \hat c -c = 1 c^c=1 ,解得 c ^ = 2 \hat c = 2 c^=2
  • 对于每次 POP 操作,栈中减少 1 个对象,所以其 c ^ − c = − 1 \hat c -c = -1 c^c=1 ,解得 c ^ = 0 \hat c = 0 c^=0
  • 对于每次 MULTIPOP 操作,栈中减少 m i n { s , k } min\{s, k\} min{s,k} 个对象,所以其 c ^ − c = − m i n { s , k } \hat c -c = -min\{s, k\} c^c=min{s,k},解得 c ^ = 0 \hat c = 0 c^=0

栈的信用与栈中对象个数是相同的。

  • 当我们调用 PUSH 时,我们使用其摊还开销来支付 1 的操作费用,剩余的 1 存储为信用。
  • 当我们调用 POP 时,我们使用信用来支付 1 的操作费用。
  • 当我们调用 MULTIPOP 时,我们使用信用来支付 m i n { s , k } min\{s,k\} min{s,k} 的操作费用。

下面分析一个由 n n n个有PUSHPOPMULTIPOP操作组成的操作序列在一个空栈上的执行情况。总的摊还开销至多是 2 ⋅ n = O ( n ) 2⋅n=\Omicron(n) 2n=O(n),操作序列中一个操作的摊还开销为 O ( n ) / n = O ( 1 ) \Omicron(n)/n=\Omicron(1) O(n)/n=O(1)

二进制计数器自增(Incrementing a binary counter)

设每翻转一个比特位开销为 1 ,由于计数器初始值为 0 ,设将一个比特位从 0 翻转到 1 摊还开销为 2 ,将一个比特位从 1 重置为 0 摊还开销为 0 。每次自增操作计数器至多有 1 个比特位从 0 翻转到 1 ,所以 n n n 次自增操作,总的摊还开销至多是 2 ⋅ n = O ( n ) 2⋅n=\Omicron(n) 2n=O(n),操作序列中一个操作的摊还开销为 O ( n ) / n = O ( 1 ) \Omicron(n)/n=\Omicron(1) O(n)/n=O(1)

17.3 势能法

势能法(potential method):将预支付的开销(prepaid work)作为“势能(potential energy)”储藏,势能可以释放用于支付未来需要的开销。

对初始数据结构 D 0 D_0 D0 执行 n n n 个操作,第 i i i 个操作的实际开销为 c i c_i ci ,摊还开销为 c ^ i \hat c_i c^i ,设数据结构 D i D_i Di 为数据结构 D i − 1 D_{i-1} Di1 执行第 i i i 个操作转化而来。势函数(potential function)为 Φ \Phi Φ ,将数据结构 D i D_i Di 映射到势能 Φ ( D i ) \Phi(D_i) Φ(Di) ,有
c ^ i = c i + Φ ( D i ) − Φ ( D i − 1 ) \hat c_i = c_i + \Phi(D_i)-\Phi(D_{i-1}) c^i=ci+Φ(Di)Φ(Di1)
n n n 个操作总摊还开销为:
∑ i = 1 n c ^ i = ∑ i = 1 n ( c + Φ ( D i ) − Φ ( D i − 1 ) ) = ∑ i = 1 n c i + Φ ( D n ) − Φ ( D 0 ) \sum_{i=1}^n\hat c_i=\sum_{i=1}^n(c+\Phi(D_i)-\Phi(D_{i-1})) \\ =\sum_{i=1}^nc_i+\Phi(D_n)-\Phi(D_0) i=1nc^i=i=1n(c+Φ(Di)Φ(Di1))=i=1nci+Φ(Dn)Φ(D0)
如果能定义一个势函数 Φ \Phi Φ ,使得 Φ ( D n ) ≥ Φ ( D 0 ) \Phi(D_n)≥\Phi(D_0) Φ(Dn)Φ(D0) ,则总摊还开销为总实际开销的渐近上界。

势能法与核算法的区别:

  • 势能法将势能和整个数据结构关联。势能法要保证在操作结束后最终势能和初始势能的势能差非负。
  • 核算法将信用和每种操作关联。核算法要保证在操作过程中信用始终非负。

评:势能法综合了聚合分析和核算法的优点,求出的总摊还开销为总实际开销的渐近上界的隐藏因子更精确。

栈操作(Stack operations)

初始栈 D 0 D_0 D0 的势能 Φ ( D 0 ) = 0 \Phi(D_0)=0 Φ(D0)=0 。由于栈中对象个数始终非负,因此 Φ ( D i ) ≥ 0 \Phi(D_i) \ge 0 Φ(Di)0

设状态 D i − 1 D_{i-1} Di1 栈中有 s s s 个对象。

PUSH操作的势能为 Φ ( D i ) − Φ ( D i − 1 ) = ( s + 1 ) − s = 1 \Phi(D_i)-\Phi(D_{i-1})=(s+1)-s=1 Φ(Di)Φ(Di1)=(s+1)s=1,,其摊还代价为 c ^ i = c i + Φ ( D i ) − Φ ( D i − 1 ) = 1 + 1 = 2 \hat c_i = c_i + \Phi(D_i)-\Phi(D_{i-1})=1+1=2 c^i=ci+Φ(Di)Φ(Di1)=1+1=2

同理,POP操作的摊还开销为0,MULTIPOP操作的摊还开销为0。

下面分析一个由 n n nPUSHPOPMULTIPOP操作组成的操作序列在一个空栈上的执行情况。总摊还开销至多是 2 ⋅ n = O ( n ) 2⋅n=\Omicron(n) 2n=O(n),操作序列中一个操作的摊还开销为 O ( n ) / n = O ( 1 ) \Omicron(n)/n=\Omicron(1) O(n)/n=O(1)

二进制计数器自增(Incrementing a binary counter)

定义计数器执行 i i iINCREMENT操作后的计数器中 1 的个数为势能为 b i b_i bi

假设第 i i iINCREMENT操作将 t i t_i ti 个比特位重置为 0 ,由于至多有一个比特位从 0 翻转到 1 ,因此实际开销 c i c_i ci 至多为 t i + 1 t_i+1 ti+1

  • b i = 0 b_i=0 bi=0,则第 i i i 次操作使得 k k k 个比特位均为 0 ,即 b i − 1 = t i = k b_{i-1}=t_i=k bi1=ti=k,即 b i = b i − 1 − t i b_i=b_{i-1} - t_i bi=bi1ti
  • b i > 0 b_i \gt 0 bi>0,则 b i = b i − 1 − t i + 1 b_i=b_{i-1}-t_i+1 bi=bi1ti+1

综上, b i ≤ b i − 1 − t i + 1 b_i \le b_{i-1} - t_i + 1 bibi1ti+1

评: b i = 0 b_i=0 bi=0 只有在 k k k 个比特位均为 1 的基础上进行自增发生溢出(overflow)才会出现 k k k 个比特位均为 0 ,也就是特殊情况也要考虑。
Φ ( D i ) − Φ ( D i − 1 ) = b i − b i − 1 ≤ b i − 1 − t i + 1 − b i − 1 = 1 − t i \Phi(D_i)-\Phi(D_{i-1})=b_i-b_{i-1} \\ \le b_{i-1}-t_i+1-b_{i-1} \\ =1-t_i Φ(Di)Φ(Di1)=bibi1bi1ti+1bi1=1ti
一个操作的摊还开销为:
c ^ i = c i + Φ ( D i ) − Φ ( D i − 1 ) ≤ ( t i + 1 ) + ( 1 − t i ) = 2 \hat c_i = c_i + \Phi(D_i)-\Phi(D_{i-1}) \\ \le (t_i+1)+(1-t_i) \\ =2 c^i=ci+Φ(Di)Φ(Di1)(ti+1)+(1ti)=2
由于计数器初始值为 0 ,因此 Φ ( D 0 ) = 0 \Phi(D_0)=0 Φ(D0)=0,又对于所有 i i i,都有 Φ ( D i ) ≥ 0 \Phi(D_i) \ge 0 Φ(Di)0,总摊还代价至多是 2 ⋅ n = O ( n ) 2⋅n=\Omicron(n) 2n=O(n),操作序列中一个操作的摊还开销为 O ( n ) / n = O ( 1 ) \Omicron(n)/n=\Omicron(1) O(n)/n=O(1)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值