组合数学_第2章_递推关系与母函数(下)

2.8 递推排列

例题 n n n个台阶,一次跨一阶或两阶,多少方案?

:设 n n n级台阶每次上一或两个台阶,不同的方案数为 a n a_n an。最后一步跨了一阶,那么有 a n − 1 a_{n-1} an1种方案;最后一步跨了两阶,那么有 a n − 2 a_{n-2} an2种方案。 a n = a n − 1 + a n − 2 , a 1 = 1 , a 2 = 2 , a 0 = a 2 − a 1 = 1 a_n=a_{n-1}+a_{n-2},a_1=1,a_2=2,a_0=a_2-a_1=1 an=an1+an2,a1=1,a2=2,a0=a2a1=1


例题:由A、B、C、D取 n n n个做可重复的排列,要求AB至少出现一次,有多少种方案?

:设所求的方案数为 a n a_n an。有两种情况

(1)直到最后两位才出现AB,也就是说前面 n − 2 n-2 n2位一次AB也没有出现,即 4 n − 2 − a n − 2 4^{n-2}-a_{n-2} 4n2an2

image-20230220190417106

(2)前面 n − 1 n-1 n1位已出现AB,有 4 a n − 1 4a_{n-1} 4an1注意这里不能写成前面 n − 2 n-2 n2位已出现AB,这样不能覆盖AB在 n − 1 n-1 n1 n − 2 n-2 n2位的情况

image-20230220190436692

a n = 4 a n − 1 + 4 n − 2 − a n − 2 a_n=4a_{n-1}+4^{n-2}-a_{n-2} an=4an1+4n2an2,即 a n − 4 a n − 1 + a n − 2 = 4 n − 2 a_n-4a_{n-1}+a_{n-2}=4^{n-2} an4an1+an2=4n2 a 1 = 0 , a 2 = 1 , a 3 = 8 a_1=0,a_2=1,a_3=8 a1=0,a2=1,a3=8


例题:10个数字(0~9)和4个四则运算(+、-、*、/)组成的14个元素,由其中的 n n n个元素的排列构成一算术表达式的个数。

:设所求个数为 a n a_n an。因为所求的 n n n个元素的排列是算术表达式,因此从左到右的最后一个元素一定是数字,而第 n − 1 n-1 n1位是数字或者运算符。若第 n − 1 n-1 n1位是数字,则前 n − 1 n-1 n1位也构成算术表达式,因此有 10 a n − 1 10a_{n-1} 10an1个;若第 n − 1 n-1 n1位是运算符,则前 n − 2 n-2 n2位必然构成算术表达式, 10 ⋅ 4 ⋅ a n − 2 = 40 a n − 2 10\cdot4\cdot a_{n-2}=40a_{n-2} 104an2=40an2个。故 a n = 10 a n − 1 + 40 a n − 2 a_n=10a_{n-1}+40a_{n-2} an=10an1+40an2 a 1 = 10 , a 2 = 120 a_1=10,a_2=120 a1=10,a2=120,其中 a 2 a_2 a2指的是由从0~99的100个数,以及 ± 0 , ± 1 , ± 2 , . . . , ± 9 \pm0,\pm1,\pm2,...,\pm9 ±0,±1,±2,...,±9构成的算术表达式的个数。
a n = 1 4 65 [ ( 15 + 65 ) ( 5 + 65 ) n − ( 15 − 65 ) ( 5 65 ) n ] \begin{aligned} a_n = &\frac{1}{4 \sqrt{65}}\left[(15+\sqrt{65})(5+\sqrt{65})^n-(15-\sqrt{65})(5\sqrt{65})^n\right]\end{aligned} an=465 1[(15+65 )(5+65 )n(1565 )(565 )n]
解递推关系过程略…


例题 n n n条直线将平面分为多少个域?假定无三线共点,且两两相交

:设满足条件的 n n n条直线将平面分成 D n D_n Dn个域,则第 n n n条直线被其余 n − 1 n-1 n1条直线分割成 n n n段,这 n n n段正好是新增加的 n n n个域的边界,因此有 D n = D n − 1 + n , D 1 = 2 D_n=D_{n-1}+n,D_1=2 Dn=Dn1+n,D1=2

n条直线将平面切分成多少域

D 1 = D 0 + 1 D_1=D_0+1 D1=D0+1,则 D 0 = 1 D_0=1 D0=1,利用递推关系可得 D n − D n − 1 = n D_n-D_{n-1}=n DnDn1=n,特征方程 x − 1 = 0 x-1=0 x1=0,可得 D n = ( A n 2 + B n + C ) ⋅ 1 n D_n=(An^2+Bn+C)\cdot1^n Dn=(An2+Bn+C)1n,又因为 D 0 = 1 , D 1 = 2 , D 2 = 4 D_0=1,D_1=2,D_2=4 D0=1,D1=2,D2=4,代入得 A = B = 1 2 , C = 1 A=B=\frac{1}{2},C=1 A=B=21C=1。综上, D n = 1 2 n ( n + 1 ) + 1 D_n=\frac{1}{2}n(n+1)+1 Dn=21n(n+1)+1


例题:设 n n n条封闭的曲线,两两相交于两点,任意三条封闭曲线不相交于一点。求这样的 n n n条曲线把平面分割成几个部分?

:设满足条件的 n n n条封闭曲线所分割成的域的数目为 a n a_n an,其中 n − 1 n-1 n1条封闭曲线所分割成的域的数目为 a n − 1 a_{n-1} an1。第 n n n条封闭曲线和这些曲线相交于 2 ( n − 1 ) 2(n-1) 2(n1)个点,这 2 ( n − 1 ) 2(n-1) 2(n1)个点把第 n n n条封闭曲线截成 2 ( n − 1 ) 2(n-1) 2(n1)条弧,每条弧把 2 ( n − 1 ) 2(n-1) 2(n1)个域中的每个域一分为二。故新增加的域的数为 2 ( n − 1 ) 2(n-1) 2(n1),则 a n = a n − 1 + 2 ( n − 1 ) , a 1 = 2 a_n=a_{n-1}+2(n-1),a_1=2 an=an1+2(n1),a1=2,利用递推关系得 a 0 = 2 a_0=2 a0=2

未命名文件

解递推关系过程略…


例题:平面上有一点P,它是 n n n个域 D 1 , D 2 , . . . , D n D_1,D_2,...,D_n D1,D2,...,Dn的共同交界点,如下图。用 k k k种颜色对这 n n n个域进行涂色,要求相邻的部分不同色,试问有多少种涂色方案?

image-20230221164805478

:令 a n a_n an表示这 n n n个域的着色方案数。有两种情况:(1) D 1 D_1 D1 D n − 1 D_{n-1} Dn1同色。那么 D n D_n Dn k − 1 k-1 k1种颜色可用,而且从 D 1 D_1 D1 D n − 2 D_{n-2} Dn2的着色方案和 n − 2 n-2 n2个域的着色方案一一对应。(拿掉 D n D_n Dn D n − 1 D_{n-1} Dn1)(2) D 1 D_1 D1 D n − 1 D_{n-1} Dn1不同色。那么 D n D_n Dn k − 2 k-2 k2种颜色可用,而且从 D 1 D_1 D1 D n − 1 D_{n-1} Dn1的着色方案和 n − 1 n-1 n1个域的着色方案一一对应(拿掉 D n D_n Dn)。综上, a n = ( k − 2 ) a n − 1 + ( k − 1 ) a n − 2 a_n=(k-2)a_{n-1}+(k-1)a_{n-2} an=(k2)an1+(k1)an2。解递推关系过程略…


例题:求下列 n × n n \times n n×n阶行列式的值,
d n = ∣ 1 1 0 0 . . . 0 0 1 1 1 0 . . . 0 0 0 1 1 1 . . . 0 0 . . . . . . . . . . . . 0 0 0 0 . . . 1 1 ∣ d_n=\begin{vmatrix} 1 & 1 & 0 & 0 & ... & 0 & 0 \\ 1 & 1 & 1 & 0 & ... & 0 & 0 \\ 0 & 1 & 1 & 1 & ... & 0 & 0 \\ . & . & . & . & \\ . & . & . & . & \\ . & . & . & . & \\ 0 & 0 & 0 & 0 & ... & 1 & 1 \\ \end{vmatrix} dn= 110...0111...0011...0001...0............00010001
:行列式按照第一行展开, d n = d n − 1 − d n − 2 , d 1 = 1 , d 2 = 0 d_n=d_{n-1}-d_{n-2},d_1=1,d_2=0 dn=dn1dn2,d1=1,d2=0,根据递推关系得 d 0 = d 1 − d 2 = 1 d_0=d_1-d_2=1 d0=d1d2=1,特征方程为 x 2 − x + 1 = 0 x^2-x+1=0 x2x+1=0 x = 1 ± 3 i 2 = e ± π 3 i x=\frac{1\pm\sqrt{3}i}{2}=e^{\pm{\frac{\pi}{3}i}} x=21±3 i=e±3πi,设 d n = k 1 cos ⁡ n π 3 + k 2 sin ⁡ n π 3 d_n=k_1\cos{\frac{n\pi}{3}}+k_2\sin{\frac{n\pi}{3}} dn=k1cos3+k2sin3,根据初始条件 d 0 = 1 , d 1 = 1 d_0=1,d_1=1 d0=1,d1=1代入得, k 1 = 1 , k 2 = 1 3 k_1=1,k_2=\frac{1}{\sqrt{3}} k1=1,k2=3 1,因此 d n = cos ⁡ n π 3 + 1 3 sin ⁡ n π 3 , n ≥ 1 d_n=\cos{\frac{n\pi}{3}}+\frac{1}{\sqrt{3}}\sin{\frac{n\pi}{3}},n\ge1 dn=cos3+3 1sin3,n1


例题:求 n n n位二进制数最后三位出现010图像得数得个数。

:对于 n n n位二进制数 b 1 b 2 . . . b n b_1b_2...b_n b1b2...bn从左向右扫描,一旦出现010图像,便从这图像后面一位从头开始扫描,例如对11位二进制数00101001010从左到右扫描得结果应该是2-4、7-9位出现010图像,即 0 010 ‾ 10 010 ‾ 10 0\overline{010}10\overline{010}10 00101001010,而不是4-6、9-11位出现的010图像,即不是 001 010 ‾ 01 010 ‾ 001\overline{010}01\overline{010} 00101001010为了区别于前者起见,我们说后者是“010”,但不是“010图像”

image-20230221200429237

由于 n n n位中除了最后三位是010已确定,其余 n − 3 n-3 n3位可取0或1,故最后3位是010的二进制数的个数是 2 n − 3 2^{n-3} 2n3。其中包含两种情况:(1)最后3位出现010图像。(2)在 n − 4 n-4 n4 n − 2 n-2 n2位出现010图像。故有
a n + a n − 2 = 2 n − 3 , n ≥ 5 a_n+a_{n-2}=2^{n-3},n\ge5 an+an2=2n3,n5
其中 a 3 = 1 , a 4 = 2 a_3=1,a_4=2 a3=1,a4=2 a 4 = 2 a_4=2 a4=2是因为这里的 n n n是大于等于5的,因此倒数第四位可以是0或1),利用递推得 a 2 = 0 , a 1 = 0 , a 0 = 1 2 a_2=0,a_1=0,a_0=\frac{1}{2} a2=0,a1=0,a0=21这个题目要求 n n n位的二进制数,还要去掉首位为0的情况。即 a n − a n − 1 a_n-a_{n-1} anan1。又因为 a n − 1 + a n − 3 = 2 n − 4 a_{n-1}+a_{n-3}=2^{n-4} an1+an3=2n4,相减得,
a n − 2 a n − 1 + a n − 2 − 2 a n − 3 = 0 a_{n}-2a_{n-1}+a_{n-2}-2a_{n-3}=0 an2an1+an22an3=0
特征方程为 x 3 − 2 x 2 + x − 2 = 0 x^3-2x^2+x-2=0 x32x2+x2=0,即 ( x − 2 ) ( x 2 + 1 ) = 0 (x-2)(x^2+1)=0 (x2)(x2+1)=0,得 x 1 = 2 , x 2 , 3 = e ± π 2 i x_1=2,x_{2,3}=e^{\pm\frac{\pi}{2}i} x1=2,x2,3=e±2πi

根据特征根设,
a n = A cos ⁡ ( n ⋅ π 2 ) + B sin ⁡ ( n ⋅ π 2 ) + C ⋅ 2 n a_n=A \cos \left(n \cdot \frac{\pi}{2}\right)+B \sin \left(n \cdot \frac{\pi}{2}\right)+C \cdot 2^n an=Acos(n2π)+Bsin(n2π)+C2n
最后解得,
a n = 2 5 cos ⁡ ( n ⋅ π 2 ) − 1 5 sin ⁡ ( n ⋅ π 2 ) + 1 10 ⋅ 2 n , n ≥ 3 a_n=\frac{2}{5} \cos \left(n \cdot \frac{\pi}{2}\right)-\frac{1}{5} \sin \left(n \cdot \frac{\pi}{2}\right)+\frac{1}{10} \cdot 2^n, n \geq 3 an=52cos(n2π)51sin(n2π)+1012n,n3

2.9 整数的拆分

定义:整数拆分是指把正整数 n n n分解成若干正整数的和,不考虑其求和的顺序,一般记为 n = n 1 + n 2 + . . . + n k , n 1 ≥ n 2 ≥ n 3 ≥ . . . ≥ n k n=n_1+n_2+...+n_k,n_1\ge n_2\ge n_3\ge ...\ge n_k n=n1+n2+...+nk,n1n2n3...nk。例如 n = 2 n=2 n=2,只有一种拆分2=1+1。 n = 3 n=3 n=3,则有1+1+1,2+1两种。 n = 4 n=4 n=4,则有1+1+1+1,2+1+1,2+2,3+1四种。注意与盒子有区别的整数拆分不一样

正整数 n n n拆分成若干整数的和,办法不一,不同拆分法的总数叫做拆分数,用 p ( n ) p(n) p(n)表示,则 p ( 2 ) = 1 , p ( 3 ) = 2 , p ( 4 ) = 4 p(2)=1,p(3)=2,p(4)=4 p(2)=1,p(3)=2,p(4)=4

正整数 n n n拆分成若干整数的和相当于把 n n n个无区别的球放到 n n n个无标志的盒子里,盒子允许空着,也允许放多余一个球。

例题 ( x + y + z ) 4 (x+y+z)^4 (x+y+z)4有多少项?

:每一项类似于 x ? y ? z ? , ? + ? + ? = 4 x^?y^?z^?,?+?+?=4 x?y?z?,?+?+?=4。问题相当于4个无标志的球放到3个有标志的 x , y , z x,y,z x,y,z的盒子里,允许空盒的计数。即为 C ( 6 , 4 ) C(6,4) C(6,4)


启发: x 1 + x 2 + . . . + x n = m x_1+x_2+...+x_n=m x1+x2+...+xn=m放在指数上分解,可以形成不同元素的幂的乘积。

对于上面的例题,我们可以使用不同的幂元来组成这些项,也就是 ( 1 + x + x 2 + x 3 + x 4 ) ( 1 + y + y 2 + y 3 + y 4 ) ( 1 + z + z 2 + z 3 + z 4 ) (1+x+x^2+x^3+x^4)(1+y+y^2+y^3+y^4)(1+z+z^2+z^3+z^4) (1+x+x2+x3+x4)(1+y+y2+y3+y4)(1+z+z2+z3+z4),则该式中一定包含了所有的 x ? y ? z ? , ? + ? + ? = 4 x^?y^?z^?,?+?+?=4 x?y?z?,?+?+?=4(包含所有符合的,当然也包含不符合的,不符合的不用管)

其组合意义是:三个括号分别是不同的幂元表示三个不同的盒子,括号里的幂表示盒子里可能会有几个球,其中1表示盒子里没有球。这里一共四个球,所以最高次幂是4就可以了。

按照这样推广,把每个括号里都扩充到无穷项,就可以覆盖所有的范围,即任意个无区别的球,分到3个有区别的盒子里。
( 1 + x + x 2 + x 3 + x 4 + . . . ) ( 1 + y + y 2 + y 3 + y 4 + . . . ) ( 1 + z + z 2 + z 3 + z 4 + . . . ) (1+x+x^2+x^3+x^4+...)(1+y+y^2+y^3+y^4+...)(1+z+z^2+z^3+z^4+...) (1+x+x2+x3+x4+...)(1+y+y2+y3+y4+...)(1+z+z2+z3+z4+...)
若是不关心具体的分球方案(就是每个盒子里到底分了多少个球),只想得到 n n n个球分到三个不同盒子里有多少种方案,则可以简化为:
( 1 + x + x 2 + x 3 + x 4 + . . . ) 3 (1+x+x^2+x^3+x^4+...)^3 (1+x+x2+x3+x4+...)3
继续推广到 m m m​个不同的盒子
( 1 + x + x 2 + x 3 + x 4 + . . . ) m (1+x+x^2+x^3+x^4+...)^m (1+x+x2+x3+x4+...)m
则分解后 x n x^n xn项前的系数就是 n n n个球分到 m m m个不同盒子的方案数


例题:求用1角、2角、3角的邮票贴出不同数值的方案数。

:因邮票允许重复,故母函数为
G ( x ) = ( 1 + x + x 2 + . . . ) ( 1 + x 2 + x 4 + . . . ) ( 1 + x 3 + x 6 + . . . ) = 1 1 − x ⋅ 1 1 − x 2 ⋅ 1 1 − x 3 = 1 1 − x − x 2 + x 4 + x 5 − x 6 G(x)=(1+x+x^2+...)(1+x^2+x^4+...)(1+x^3+x^6+...)=\frac{1}{1-x}\cdot\frac{1}{1-x^2}\cdot\frac{1}{1-x^3}=\frac{1}{1-x-x^2+x^4+x^5-x^6} G(x)=(1+x+x2+...)(1+x2+x4+...)(1+x3+x6+...)=1x11x211x31=1xx2+x4+x5x61
image-20230222144732116

通过长除法得,
G ( x ) = 1 + x + 2 x 2 + 3 x 3 + 4 x 4 + 5 x 5 + 7 x 6 + . . . G(x)=1+x+2x^2+3x^3+4x^4+5x^5+7x^6+... G(x)=1+x+2x2+3x3+4x4+5x5+7x6+...
以其中 7 x 6 7x^6 7x6项为例,其系数为7,说明贴出6角的方案有7个:111111、11112、1113、1122、123、222、33


例题:整数 n n n拆分成1,2,3,…,m的和,并允许重复,求其母函数。若其中 m m m至少出现一次,其母函数如何?


G 1 ( x ) = ( 1 + x + x 2 + ⋯   ) ( 1 + x 2 + x 4 + ⋯   ) . . . . . . ( 1 + x m + x 2 m + ⋯   ) = 1 ( 1 − x ) ( 1 − x 2 ) ⋯ ( 1 − x m ) G_1(x)=(1+x+x^2+\cdots)(1+x^2+x^4+\cdots)......(1+x^m+x^{2m}+\cdots)=\frac{1}{(1-x)(1-x^2)\cdots(1-x^m)} G1(x)=(1+x+x2+)(1+x2+x4+)......(1+xm+x2m+)=(1x)(1x2)(1xm)1
若拆分中 m m m至少出现一次,其母函数为
G 2 ( x ) = ( 1 + x + x 2 + ⋯   ) ( 1 + x 2 + x 4 + ⋯   ) . . . . . . ( x m + x 2 m + ⋯   ) = x m ( 1 − x ) ( 1 − x 2 ) ⋯ ( 1 − x m ) G_2(x)=(1+x+x^2+\cdots)(1+x^2+x^4+\cdots)......(x^m+x^{2m}+\cdots)=\frac{x^m}{(1-x)(1-x^2)\cdots(1-x^m)} G2(x)=(1+x+x2+)(1+x2+x4+)......(xm+x2m+)=(1x)(1x2)(1xm)xm

2.10 Ferrers图像

Ferrers图像是研究拆分的一种工具。

定义:一个从上而下的 n n n层格子, m i m_i mi为第 i i i层的格子数,当 m i ≥ m i + 1 , ( i = 1 , 2 , . . . , n − 1 ) m_i\ge m_{i+1},(i=1,2,...,n-1) mimi+1,(i=1,2,...,n1),即上层的格子数不少于下层的格子数时,称之为Ferrers图像

Snipaste_2023-02-22_15-06-12

Ferrers图像具有如下性质:

  1. 每层至少有一个格子
  2. 第一行与第一列互换,第二行与第二列互换,…,即绕虚线轴旋转所得的图仍是Ferrers图像。这两个Ferrers图像称为一对共轭的Ferrers图像。

因整数 n n n拆分成 k k k个数的和的拆分可用一 k k k行的图像表示。所得的Ferrers图像的共轭图像最上面一行有 k k k个格子。例如:

image-20230222151408745

通过Ferrers图像得到关系整数拆分的结论:

  1. 整数 n n n拆分成 m m m个数的和的拆分数,和将 n n n拆分成最大数为 m m m的拆分数相等,反之亦然。
    • 整数 n n n拆分成 m m m个数,也就是 n n n个相同球放到 m m m个相同的盒子里,不能有空盒。
    • 拆分成最大数为 m m m,也就是 n n n的拆分结果里必然有 m m m且为当前拆分出来的最大数。也就是 n n n拆成 1 1 1 m m m的和,允许重复, m m m至少一次。即上面例题的第二问。
  2. 整数 n n n拆分成最多不超过 m m m个数的和的拆分数,和 n n n拆分成最大数不超过 m m m的拆分数相等。
    • 整数 n n n拆分成最多 m m m个数,也就是 n n n个相同球放到 m m m个相同的盒子里,但允许有空盒。
    • 拆分成最大数不超过 m m m,也就是 n n n的拆分结果里最大数是 m m m,但不一定要有。也就是 n n n拆成 1 1 1 m m m的和,允许重复,即上面例题的第一问。
  3. 整数 n n n拆分成互不相同的若干奇数的和的拆分数,和 n n n拆分成有自共轭的Ferrers图像的拆分数相等。

2.11 指数型母函数

定义:对于序列 a 0 , a 1 , a 2 , . . . a_0,a_1,a_2,... a0,a1,a2,...,函数 G e ( x ) = a 0 + a 1 x 1 ! + a 2 x 2 2 ! + a 3 x 3 3 ! + . . . + a k x k k ! + . . . G_e(x)=a_0+a_1\frac{x}{1!}+a_2\frac{x^2}{2!}+a_3\frac{x^3}{3!}+...+a_k\frac{x^k}{k!}+... Ge(x)=a0+a11!x+a22!x2+a33!x3+...+akk!xk+...称为是序列 a 0 , a 1 , a 2 , . . . a_0,a_1,a_2,... a0,a1,a2,...的指数型母函数。

指数型母函数是母函数的一种,主要解决允许重复的排列问题。

例题:由a、b、c、d四个字符取5个作允许重复的排列,要求数a出现的次数不超过2次,但不能不出现;b出现次数不超过1次;c出现的次数可达3次,也可以不出现;d出现次数为偶数。求满足上述条件的排列数。


G e ( x ) = ( x 1 ! + x 2 2 ! ) ( 1 + x ) ( 1 + x 1 ! + x 2 2 ! + x 3 3 ! ) ( 1 + x 2 2 ! + x 4 4 ! ) = ( x + 3 2 x 2 + 1 2 x 3 ) ( 1 + x + x 2 + 2 3 x 3 + 7 24 x 4 + 1 8 x 5 + x 6 48 + x 7 144 ) = x + 5 2 x 2 + 3 x 3 + 8 3 x 4 + 43 24 x 5 + 43 48 x 6 + 17 48 x 7 + 1 288 x 8 + 1 48 x 9 + 1 288 x 10 = x 1 ! + 5 x 2 2 ! + 18 x 3 3 ! + 64 x 4 4 ! + 215 x 5 5 ! + 645 x 6 6 ! + 1785 x 7 7 ! + 140 x 8 8 ! + 7650 x 9 9 ! + 12600 x 10 10 ! G_e(x) = (\frac{x}{1 !}+\frac{x^2}{2 !})(1+x)(1+\frac{x}{1 !}+\frac{x^2}{2 !}+\frac{x^3}{3 !})(1+\frac{x^2}{2 !}+\frac{x^4}{4 !}) \\ =(x+\frac{3}{2} x^2+\frac{1}{2} x^3) (1+x+x^2+\frac{2}{3} x^3+\frac{7}{24} x^4+\frac{1}{8} x^5+\frac{x^6}{48}+\frac{x^7}{144}) \\ =x+\frac{5}{2} x^2+3 x^3+\frac{8}{3} x^4+\frac{43}{24} x^5+\frac{43}{48} x^6+\frac{17}{48} x^7+\frac{1}{288} x^8+\frac{1}{48} x^9+\frac{1}{288} x^{10} \\ =\frac{x}{1 !}+5 \frac{x^2}{2 !}+18 \frac{x^3}{3 !}+64 \frac{x^4}{4 !}+215 \frac{x^5}{5 !}+645 \frac{x^6}{6 !} +1785 \frac{x^7}{7 !}+140 \frac{x^8}{8 !}+7650 \frac{x^9}{9 !}+12600 \frac{x^{10}}{10 !} Ge(x)=(1!x+2!x2)(1+x)(1+1!x+2!x2+3!x3)(1+2!x2+4!x4)=(x+23x2+21x3)(1+x+x2+32x3+247x4+81x5+48x6+144x7)=x+25x2+3x3+38x4+2443x5+4843x6+4817x7+2881x8+481x9+2881x10=1!x+52!x2+183!x3+644!x4+2155!x5+6456!x6+17857!x7+1408!x8+76509!x9+1260010!x10
由此可见,满足条件的排列数共215个。


例题:求1,3,5,7,9这5个数字组成的 n n n位数的个数,要求其中3、7出现的次数为偶数,其他1,5,9出现次数不加限制。

:设满足条件的 n n n位的个数为 a n a_n an,则序列 a 1 , a 2 , . . . , a n , . . . a_1,a_2,...,a_n,... a1,a2,...,an,...对应的指数型母函数为
G e ( x ) = ( 1 + x 2 2 ! + x 4 4 ! + ⋯   ) 2 ( 1 + x + x 2 2 ! + x 3 3 ! + ⋯   ) 3 G_e(x) = (1+\frac{x^2}{2 !}+\frac{x^4}{4 !}+\cdots)^2 (1+x+\frac{x^2}{2 !}+\frac{x^3}{3 !}+\cdots)^3 Ge(x)=(1+2!x2+4!x4+)2(1+x+2!x2+3!x3+)3
由于 e − x = 1 − x + x 2 2 ! − x 3 3 ! + ⋯ e^{-x}=1-x+\frac{x^2}{2 !}-\frac{x^3}{3 !}+\cdots ex=1x+2!x23!x3+,可得
1 2 ( e x + e − x ) = 1 + x 2 2 ! + x 4 4 ! + ⋯ \frac{1}{2}(e^x+e^{-x})=1+\frac{x^2}{2 !}+\frac{x^4}{4 !}+\cdots 21(ex+ex)=1+2!x2+4!x4+

G e ( x ) = 1 4 ( e x + e − x ) 2 e 3 x = 1 4 ( e 2 x + 2 + e − 2 x ) e 3 x = 1 4 ( e 5 x + 2 e 3 x + e x ) = 1 4 ( ∑ n = 0 ∞ 5 n n ! x n + 2 ∑ n = 0 ∞ 3 n x n n ! + ∑ n = 0 ∞ x n n ! ) = 1 4 ∑ n = 0 ∞ ( 5 n + 2 ⋅ 3 n + 1 ) x n n ! ∴ a n = 1 4 ( 5 n + 2 ⋅ 3 n + 1 ) G_e(x) =\frac{1}{4}(e^x+e^{-x})^2 e^{3 x} \\ =\frac{1}{4}(e^{2 x}+2+e^{-2 x}) e^{3 x} \\ =\frac{1}{4}(e^{5 x}+2 e^{3 x}+e^x) \\ =\frac{1}{4}(\sum_{n=0}^{\infty} \frac{5^n}{n !} x^n+2 \sum_{n=0}^{\infty} \frac{3^n x^n}{n!}+\sum_{n=0}^{\infty} \frac{x^n}{n !}) \\ =\frac{1}{4} \sum_{n=0}^{\infty}(5^n+2 \cdot 3^n+1) \frac{x^n}{n !} \\ \therefore a_n=\frac{1}{4}(5^n+2 \cdot 3^n+1) Ge(x)=41(ex+ex)2e3x=41(e2x+2+e2x)e3x=41(e5x+2e3x+ex)=41(n=0n!5nxn+2n=0n!3nxn+n=0n!xn)=41n=0(5n+23n+1)n!xnan=41(5n+23n+1)

2.12 Stirling数

定理 ( x 1 + x 2 + . . . + x n ) m (x_1+x_2+...+x_n)^m (x1+x2+...+xn)m展开式的项数等于 C n + m − 1 m C_{n+m-1}^m Cn+m1m,而且这些系数之和等于 n m n^m nm

定义 n n n个有区别的球放到 m m m个相同的盒子中,要求没有空盒,其不同的方案数用 S ( n , m ) S(n,m) S(n,m)表示,称为第二类Stirling数

S ( n , m ) S(n,m) S(n,m)也就是将 n n n个不同的数拆分成 m m m个非空部分的方案数,也即 n n n个元素的集合划分成 m m m个非空子集的方案数。例如,红、黄、蓝、白四种颜色的球,放到两个无区别的盒子里,不允许有空盒,即 S ( 4 , 2 ) = 7 S(4,2)=7 S(4,2)=7

第二类Stirling数 S ( n , k ) S(n,k) S(n,k)有下列性质

  1. S ( n , 0 ) = S ( 0 , n ) = 0 , ∀ n ϵ N S(n,0)=S(0,n)=0,\forall n \epsilon N S(n,0)=S(0,n)=0,nϵN
  2. S ( n , k ) > 0 , 若 n ≥ k ≥ 1 S(n,k)>0,若n \ge k \ge 1 S(n,k)>0,nk1
  3. S ( n , k ) = 0 , 若 k > n ≥ 1 S(n,k)=0,若k > n \ge 1 S(n,k)=0,k>n1
  4. S ( n , 1 ) = 1 , n ≥ 1 S(n,1)=1,n \ge 1 S(n,1)=1,n1
  5. S ( n , n ) = 1 , n ≥ 1 S(n,n)=1,n \ge 1 S(n,n)=1,n1
  6. S ( n , 2 ) = 2 n − 1 − 1 S(n,2)=2^{n-1}-1 S(n,2)=2n11
    • 设有 n n n个不相同的球 b 1 , b 2 , b 3 , . . . , b n b_1,b_2,b_3,...,b_n b1,b2,b3,...,bn,从中取出球 b 1 b_1 b1,其余的 n − 1 n-1 n1个球,每个都有与 b 1 b_1 b1同盒或不与 b 1 b_1 b1同盒两种选择,但必须排除一种选择,即全都与 b 1 b_1 b1同盒,这时另一盒将是空盒。故有 2 n − 1 − 1 2^{n-1}-1 2n11种方案。
  7. S ( n , 3 ) = 1 3 ! ( 3 n − 3 × 2 n + 3 ) S(n,3)=\frac{1}{3!}(3^n-3\times2^n+3) S(n,3)=3!1(3n3×2n+3)
  8. S ( n , n − 1 ) = ( n 2 ) S(n, n-1)=(\begin{array}{l}n \\ 2\end{array}) S(n,n1)=(n2)
    • n n n个球放到 n − 1 n-1 n1个盒子里,不允许有空盒,故必有一盒有两球,从 n n n个有区别的球种取2个共有 C ( n , 2 ) C(n,2) C(n,2)种方案。
  9. S ( n , n − 2 ) = ( n 3 ) + 3 ( n 4 ) S(n, n-2)=(\begin{array}{l}n \\ 3\end{array})+3(\begin{array}{l}n \\ 4\end{array}) S(n,n2)=(n3)+3(n4)
    • n n n个球放到 n − 2 n-2 n2个盒子里,不允许有空盒,一种情况是一个盒子里有3个球,其他盒子都是一个球,即从 n n n个有区别的球中取3个有 C ( n , 3 ) C(n,3) C(n,3)种方案;另一种情况是有两个盒子里有各有两个球,其他盒子都是一个球,即从 n n n个有区别的球种取4个,这四个有区别的球可以组成3组,即12和34、13和24、14和23,此时有 3 C ( n , 4 ) 3C(n,4) 3C(n,4)。因此共有 ( n 3 ) + 3 ( n 4 ) (\begin{array}{l}n \\ 3\end{array})+3(\begin{array}{l}n \\ 4\end{array}) (n3)+3(n4)种方案。

第二类Stirling数满足下面的递推关系: S ( n , m ) = m S ( n − 1 , m ) + S ( n − 1 , m − 1 ) , n > 1 , m ≥ 1 S(n,m)=mS(n-1,m)+S(n-1,m-1),n>1,m\ge1 S(n,m)=mS(n1,m)+S(n1,m1),n>1,m1

2.13 Catalan数

Catalan数 h n h_n hn满足以下递推关系

  1. h n + 1 = h 2 h n + h 3 h n − 1 + ⋯ + h n − 1 h 3 + h n h 2 h_{n+1}=h_2 h_n+h_3 h_{n-1}+\cdots+h_{n-1} h_3+h_n h_2 hn+1=h2hn+h3hn1++hn1h3+hnh2,
  2. ( n − 3 ) h n = n 2 ( h 3 h n − 1 + h 4 h n − 2 + ⋯   (n-3) h_n=\frac{n}{2}\left(h_3 h_{n-1}+h_4 h_{n-2}+\cdots\right. (n3)hn=2n(h3hn1+h4hn2+ + h n − 2 h 4 + h n − 1 h 3 ) \left.+h_{n-2} h_4+h_{n-1} h_3\right) +hn2h4+hn1h3).

Catalan数的一般项公式为:
C n = 1 n + 1 ( 2 n n ) = ( 2 n ) ! ( n + 1 ) ! n ! C_n=\frac{1}{n+1}(\begin{array} {l} 2n \\ n\end{array})= \frac{(2n)!}{(n+1)!n!} Cn=n+11(2nn)=(n+1)!n!(2n)!

2.14 总结

  1. n n n个球有区别, m m m​个盒子有区别,有空盒。(n个不同元素的集合划分为m个子集,考虑子集的顺序,准许划分出空集)
    m n m^n mn

    G e ( x ) = ( 1 + x + x 2 2 ! + x 3 3 ! + ⋯   ) m = ( e x ) m G_e(x)=(1+x+\frac{x^2}{2 !}+\frac{x^3}{3 !}+\cdots)^m=(e^x)^m Ge(x)=(1+x+2!x2+3!x3+)m=(ex)m

  2. n n n个球有区别, m m m个盒子有区别,无空盒。(n个不同元素的集合划分为m个子集,考虑子集的顺序,不准划分出空集)
    m ! S ( n , m ) m!S(n,m) m!S(n,m)

    G e ( x ) = ( x + x 2 2 ! + x 3 3 ! + ⋯   ) m = ( e x − 1 ) m G_e(x)=(x+\frac{x^2}{2 !}+\frac{x^3}{3 !}+\cdots)^m=(e^x-1)^m Ge(x)=(x+2!x2+3!x3+)m=(ex1)m

  3. n n n个球有区别, m m m个盒子没区别,有空盒。(n个不同元素的集合划分为m个子集,不考虑子集的顺序,准许划分出空集)
    S ( n , 1 ) + S ( n , 2 ) + ⋯ + S ( n , m ) , n ≥ m S ( n , 1 ) + S ( n , 2 ) + ⋯ + S ( n , n ) , n ≤ m S(n,1)+S(n,2)+\cdots+S(n,m),n\ge m \\ S(n,1)+S(n,2)+\cdots+S(n,n),n\le m S(n,1)+S(n,2)++S(n,m),nmS(n,1)+S(n,2)++S(n,n),nm

  4. n n n个球有区别, m m m个盒子没区别,无空盒。(n个不同元素的集合划分为m个子集,不考虑子集的顺序,不准划分出空集)
    S ( n , m ) S(n,m) S(n,m)

  5. n n n个球无区别, m m m​个盒子有区别,有空盒。(正整数n拆分成m个正整数,考虑拆分的顺序,准许拆分出0)(有序的整数拆分)
    C ( n + m − 1 , n ) C(n+m-1,n) C(n+m1,n)

    G ( x ) = 1 ( 1 − x ) m G(x)=\frac{1}{(1-x)^m} G(x)=(1x)m1

  6. n n n个球无区别, m m m个盒子有区别,无空盒。(正整数n拆分成m个正整数,考虑拆分的顺序,不准拆分出0)(有序的整数拆分)
    C ( m + ( n − m ) − 1 , n − m ) = C ( n − 1 , m − 1 ) C(m+(n-m)-1,n-m)=C(n-1,m-1) C(m+(nm)1,nm)=C(n1,m1)

    G ( x ) = x m ( 1 − x ) m G(x)=\frac{x^m}{(1-x)^m} G(x)=(1x)mxm

  7. n n n个球无区别, m m m个盒子无区别,有空盒。(正整数n拆分成m个正整数,不考虑拆分的顺序,准许拆分出0)(无序的整数拆分)
    G ( x ) = 1 ( 1 − x ) ( 1 − x 2 ) ⋯ ( 1 − x m ) G(x)=\frac{1}{(1-x)(1-x^2)\cdots(1-x^m)} G(x)=(1x)(1x2)(1xm)1

  8. n n n个球无区别, m m m个盒子无区别,无空盒。(正整数n拆分成m个正整数,不考虑拆分的顺序,不准拆分出0)(无序的整数拆分)
    G ( x ) = x m ( 1 − x ) ( 1 − x 2 ) ⋯ ( 1 − x m ) G(x)=\frac{x^m}{(1-x)(1-x^2)\cdots(1-x^m)} G(x)=(1x)(1x2)(1xm)xm

参考公式

  1. 二项式定理

( a + b ) n = C n 0 a n − 0 b 0 + C n 1 a n − 1 b 1 + C n 2 a n − 2 b 2 + . . . + C n n a n − n b n ,通项 T k + 1 = C n k a n − k b k (a+b)^n=C_{n}^{0}a^{n-0}b^{0}+C_{n}^{1}a^{n-1}b^{1}+C_{n}^{2}a^{n-2}b^{2}+...+C_{n}^{n}a^{n-n}b^{n},通项T_{k+1}=C_{n}^{k}a^{n-k}b^{k} (a+b)n=Cn0an0b0+Cn1an1b1+Cn2an2b2+...+Cnnannbn,通项Tk+1=Cnkankbk

特别地,当 a = 1 , b = x a=1,b=x a=1,b=x时,
( 1 + x ) n = C n 0 x 0 + C n 1 x 1 + C n 2 x 2 + . . . + C n n x n (1+x)^n=C_{n}^{0}x^{0}+C_{n}^{1}x^{1}+C_{n}^{2}x^{2}+...+C_{n}^{n}x^{n} (1+x)n=Cn0x0+Cn1x1+Cn2x2+...+Cnnxn
再特别地,当 x = 1 x=1 x=1时,
( 1 + 1 ) n = C n + C n 1 + C n 2 + . . . + C n n = 2 n (1+1)^n=C_{n}+C_{n}^{1}+C_{n}^{2}+...+C_{n}^{n}=2^n (1+1)n=Cn+Cn1+Cn2+...+Cnn=2n

  1. 常用幂级数展开式
    1 1 − x = 1 + x + x 2 + x 3 + . . . = ∑ n = 0 ∞ x n \frac{1}{1-x}=1+x+x^2+x^3+...=\sum_{n=0}^\infty x^n 1x1=1+x+x2+x3+...=n=0xn

    e x = 1 + x + x 2 2 ! + x 3 3 ! + . . . = ∑ n = 0 ∞ x n n ! e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...=\sum_{n=0}^\infty \frac{x^n}{n!} ex=1+x+2!x2+3!x3+...=n=0n!xn

    sin ⁡ x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + . . . = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! \sin{x}=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...=\sum_{n=0}^\infty \frac{(-1)^nx^{2n+1}}{(2n+1)!} sinx=x3!x3+5!x57!x7+...=n=0(2n+1)!(1)nx2n+1

    其他可通过加减、求导、积分等运算得到!

  2. 欧拉公式
    e i x = cos ⁡ x + i sin ⁡ x e^{ix}=\cos{x}+i\sin{x} eix=cosx+isinx

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值