python:NumPy基础(3),文件输入输出

本文介绍了如何使用Python的NumPy库进行数组的数据读写操作,包括将数组保存为二进制格式、压缩文件以及文本文件的方法,并展示了如何从这些文件中加载数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用python进行数据分析

第四章:NumPy基础:数组和矢量计算

1,用于数组的文件输入输出

1,将数组以二进制格式保存到磁盘

np.savenp.load是读写磁盘数组数据的两个主要函数。默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为.npy的文件中的。
np.save可保存二进制格式数据到文件当中
>>> arr=np.arange(10)
>>> np.save('C:\Users\Administrator\Desktop\\arr', arr)
如果文件路径末尾没有扩展名.pny,则该扩展名会被自动加上。可以通过np.load读取磁盘上的数组
>>> np.load('C:\Users\Administrator\Desktop\\arr.npy')
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
通过np.savez可以将多个数组保存到一个压缩文件中,将数组以关键字参数的形式传入即可
>>> np.savez('C:\Users\Administrator\Desktop\\array_archive.npz', a=arr, b=arr)
加载.npz文件时,你会得到一个类似字典的对象,该对象对各个数组进行延迟加载
>>> arch=np.load('C:\Users\Administrator\Desktop\\array_archive.npz')
>>> arch
<numpy.lib.npyio.NpzFile object at 0x0000000003AF3470>
>>> arch.keys()
['a', 'b']
>>> arch['b']
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

2,存取文本文件

对于NumPy通常利用np.loadtxt和np.genfromtxt这两个函数将数据加载到普通的NumPy数组中。
这两个函数有许多选项:指定各种分隔符、针对特定列的转化器函数、需要跳过的行数等
>>> arr=np.loadtxt('C:\Users\Administrator\Desktop\\npload.txt', delimiter='\t') #加载的文件名为npload.txt
>>> arr
array([[ 1.2, 3.4, 7.5, 9. ],
[ 4.1, 4.2, 5.6, 7.4]])
了利用np.savetxt将数组写到以某个分隔符隔开的文本文件中
>>> np.savetxt('C:\Users\Administrator\Desktop\\opt1.txt', arr, delimiter='\t', fmt='%1.1e') #保存的文件名为opt1.txt
保存形式为:
1.2e+00 3.4e+00 7.5e+00 9.0e+00
4.1e+00 4.2e+00 5.6e+00 7.4e+00
保存为科学输入法格式,每个数字中间以制表符分隔

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值