python:NumPy基础(4),总结

本文总结了Python数据分析库NumPy的基础知识,包括创建ndarray、通用函数和数组数据处理。介绍了ndarray的创建、类型转换,以及索引切片特性。通用函数如平方运算和比较运算,用于元素级计算。还讲解了利用数组进行数据处理的方法,如numpy.where函数实现分支结构判断,以及数组的统计方法、排序和唯一化操作。最后提到了数组的文件输入输出和随机数生成。
摘要由CSDN通过智能技术生成

利用python进行数据分析

第四章:NumPy基础:数组和矢量计算

总结

1,创建ndarray

利用np.array()函数
>>> import numpy as np
>>> np.array([1.2, 4.5, 7.1, 9.0])
array([ 1.2, 4.5, 7.1, 9. ])
数组类型:dtype,整型多为int32,浮点型多为float64
另外包括布尔型(bool),字符串型(string_)
>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
转换数组类型:
np.array().astype(np.float64)或np.string_
数组和标量之间的运算都会应用到元素级别
索引切片和列表切片的用法相同,索引从0开始,取出数组元素包括开始索引但不包括结束索引。
但要重点注意一下方面:数组的切片都是原始数组的视图,所以切片后的数据不是被复制出来的,而是原有数组的应用,切片后的数组改动后原有数组也会改变,如果想对切片结果进行复制则需要,类似arr[5:8].copy()这样的操作
高维数组的一个索引对象,实际上得到的结果是一个降维的数组
通过数组的比较运算ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值