利用python进行数据分析
第四章:NumPy基础:数组和矢量计算
总结
1,创建ndarray
利用np.array()函数
>>> import numpy as np
>>> np.array([1.2, 4.5, 7.1, 9.0])
array([ 1.2, 4.5, 7.1, 9. ])
数组类型:dtype,整型多为int32,浮点型多为float64
另外包括布尔型(bool),字符串型(string_)
>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
转换数组类型:
np.array().astype(np.float64)或np.string_
数组和标量之间的运算都会应用到元素级别
索引切片和列表切片的用法相同,索引从0开始,取出数组元素包括开始索引但不包括结束索引。
但要重点注意一下方面:数组的切片都是原始数组的视图,所以切片后的数据不是被复制出来的,而是原有数组的应用,切片后的数组改动后原有数组也会改变,如果想对切片结果进行复制则需要,类似arr[5:8].copy()这样的操作
高维数组的一个索引对象,实际上得到的结果是一个降维的数组
通过数组的比较运算ÿ