3x3,5x5,7x7,9x9卷积核性能比较

实验发现,对于9*9尺寸的mnist0,2二分类任务,使用9*9卷积核时,网络性能峰值出现在卷积核数量为6个,与预期经验规律不符。对比不同尺寸卷积核,5*5卷积核在21个以内性能最佳,7*7卷积核虽有更长的性能上升区间,但5*5卷积核的效费比更高。
摘要由CSDN通过智能技术生成

用7*7的卷积核分类9*9的图片到底应该用几个卷积核?中得到了一个经验结论:卷积核越大,网络的性能上升区间越大;上升区间越大,性能峰值越大。要按此分类9*9的图片,9*9的卷积核就是极限性能最优的卷积核。这次就验证这个观点。

 

(mnist 0,2)-con(9*9)*n-30*2-(1,0)(0,1)

用9*9的卷积核分类mnist0,2,卷积核数量从2到33个,收敛标准6e-5。统计平均值,比较卷积核数量对分类性能的影响。

 

得到表格

 

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大值p-max

平均值标准差

2

0.8592554

0.1407446

3583946.2

0.9776667

6.00E-05

2062400.8

410417767

6840.2961

0.9900596

0.0076349

3

0.6934459

0.3065541

38925.899

0.9799669

6.00E-05

30715.769

6112448

101.87413

0.9910537

0.0083689

4

0.4673405

0.5326595

30166.276

0.9824595

6.00E-05

31589.251

6286261

104.77102

0.9910537

0.0076396

5

0.4170945

0.5829055

25983.362

0.9837433

6.00E-05

33737.673

6713801

111.89668

0.9915507

0.0059125

6

0.2864561

0.7135438

23770.226

0.9840255

6.00E-05

37091.392

7381199

123.01998

0.9915507

0.0055148

7

0.2613328

0.7386673

22559.327

0.9833237

6.00E-05

42215.553

8400902

140.01503

0.9910537

0.0057736

8

0.2261607

0.7738393

21344.186

0.9832063

6.00E-05

44424.935

8840569

147.34282

0.9910537

0.0057323

9

0.2110868

0.7889131

20384.533

0.9830989

6.00E-05

47688.075

9489940

158.16567

0.9910537

0.0064783

10

0.2060627

0.7939372

19761.482

0.9828541

6.00E-05

51445.075

10237576

170.62627

0.9900596

0.0057135

11

0.1457677

0.8542324

19322.889

0.9820224

6.00E-05

55209.754

10986747

183.11245

0.9910537

0.0064363

12

0.2161118

0.7838883

19832.055

0.98194

6.00E-05

64321.513

12799991

213.33318

0.9905567

0.0063398

13

0.1156199

0.8843801

18791.593

0.9822997

6.00E-05

63586.332

7926090

132.1015

0.9905567

0.0063122

14

0.1658659

0.8341341

18955.724

0.9827193

6.00E-05

70956.271

14120303

235.33838

0.9900596

0.0060133

15

0.185964

0.8140359

18780.759

0.9821348

6.00E-05

73026.568

14532291

242.20485

0.9905567

0.0061449

16

0.1357185

0.8642816

18840.497

0.9814855

6.00E-05

81444.03

16207362

270.1227

0.9900596

0.0084691

17

0.1558167

0.8441832

18937.834

0.9827243

6.00E-05

106632.71

21219920

353.66533

0.9905567

0.0059273

18

0.1960134

0.8039867

18645.412

0.9810459

6.00E-05

88521.121

17615710

293.59517

0.9905567

0.0080427

19

0.1809402

0.8190597

18927.709

0.9818251

6.00E-05

122419.96

24361584

406.0264

0.9900596

0.0061403

20

0.1457675

0.8542325

18760.226

0.9820524

6.00E-05

122352.5

24348153

405.80255

0.9905567

0.0067007

21

0.2060623

0.7939377

18865.905

0.9812956

6.00E-05

103280.36

20552815

342.54692

0.9905567

0.0060445

22

0.1759154

0.8240846

19115.874

0.9818726

6.00E-05

131887.82

26245685

437.42808

0.9910537

0.0077266

23

0.1658656

0.8341343

18498.497

0.9810833

6.00E-05

120268.38

23933414

398.89023

0.9895626

0.0065564

24

0.160841

0.8391591

18965.899

0.9817452

6.00E-05

139977.06

27855444

464.2574

0.9900596

0.0073353

25

0.1156199

0.8843801

18914.126

0.9811932

6.00E-05

136068.09

27077554

451.29257

0.9905567

0.0080618

26

0.1759148

0.8240852

18712.136

0.9807736

6.00E-05

130852.5

26039658

433.9943

0.9905567

0.0084431

27

0.1306936

0.8693063

18862.322

0.9817727

6.00E-05

152705.07

30388311

506.47185

0.9900596

0.0074685

28

0.1608408

0.8391593

19022.915

0.9820224

6.00E-05

154029.97

30651970

510.86617

0.9905567

0.0074131

29

0.1507922

0.8492078

19243.367

0.9808211

6.00E-05

166377.2

33109072

551.81787

0.9895626

0.0101928

30

0.1708907

0.8291093

19727.829

0.9817003

6.00E-05

165774.29

32989084

549.81807

0.9900596

0.0069316

31

0.1407426

0.8592574

19221.327

0.9816378

6.00E-05

175660.87

34956519

582.60865

0.9900596

0.0082442

32

0.1759154

0.8240847

19524.286

0.9810983

6.00E-05

206296.99

41053101

684.21835

0.9900596

0.0075721

33

0.1256688

0.8743311

19937.794

0.9821898

6.00E-05

178003

35422597

590.37662

0.9900596

0.0072098

 

将pave画成图

 

很明显当卷积核数量为6的时候网络性能达到峰值。这个结论与前面的经验关系完全不符,这个最优值大于3*3卷积核的4个,小于5*5卷积核的16个。

2分类

3*3

5*5

7*7

9*9

性能上升区间

4

16

55

6

p-ave

0.9838731

0.987322

0.987867

0.984025

耗时min/199次

11.6074

102.3604

821.3148

123.02

 

对二分类9*9尺寸的mnist0,2,平均性能峰值最大的卷积核是7*7.

 

 

 

平均准确率p-ave

  
 

6.00E-05

6.00E-05

6.00E-05

6.00E-05

 

3*3

5*5

7*7

9*9

0

0.981171

0.981171

0.981171

 

1

0.975916

0.978588

0.976048

 

2

0.981326

0.983376

0.981191

0.977667

3

0.983633

0.985159

0.983136

0.979967

4

0.983651

0.986268

0.98426

0.98246

5

0.983289

0.986143

0.984795

0.983743

6

0.983506

0.986323

0.986064

0.984025

7

0.982744

0.986605

0.986086

0.983324

8

0.982694

0.98689

0.986218

0.983206

9

0.981885

0.98697

0.986083

0.983099

10

0.980983

0.986988

0.985991

0.982854

11

0.981401

0.987225

0.986111

0.982022

12

0.98214

0.986988

0.986328

0.98194

13

 

0.987295

0.986571

0.9823

14

 

0.987132

0.986858

0.982719

15

 

0.987065

0.98695

0.982135

16

 

0.987322

0.986715

0.981485

17

 

0.987227

0.987055

0.982724

18

 

0.98672

0.986471

0.981046

19

 

0.987137

0.986778

0.981825

20

 

0.986988

0.986765

0.982052

21

 

0.986855

0.986953

0.981296

22

  

0.986728

0.981873

23

  

0.98719

0.981083

24

  

0.987053

0.981745

25

  

0.98706

0.981193

26

  

0.98685

0.980774

27

  

0.98665

0.981773

28

  

0.987227

0.982022

29

  

0.986795

0.980821

30

  

0.986586

0.9817

31

  

0.98675

0.981638

32

  

0.98691

0.981098

33

  

0.986768

0.98219

在21个卷积核以内对比4个尺寸卷积核的性能

9*9卷积核的性能显著的小于5*5和7*7卷积核,与3*3卷积核的性能相当。当卷积核数量大于4个以后9*9卷积核的性能略好于3*3卷积核。在21个卷积核以内比较这个4个尺寸的卷积核,可以得到

5*5>7*7>9*9>3*3

也就是5*5卷积核在21个以内性能最好,但7*7卷积核由于有55个的性能上升区间最终将以8倍耗时取得万分之5的性能优势。这4个卷积核极限性能最好的是7*7,但效费比最高的应该是5*5.

由这4个实验也可以得出一个经验规律,对2n+1*2n+1或者2n*2n尺寸的图片,卷积核最优尺寸为2n-1*2n-1,在小于等于2n-1的范围内,卷积核越大,网络的性能上升区间越大:上升区间越大,性能峰值越大。

 

关于卷积核的实验整理

用7*7的卷积核分类9*9的图片到底应该用几个卷积核?55个

(mnist 0,2)-con(7*7)*n-30*2-(1,0)(0,1)

 

到底应该用3*3的卷积核还是5*5的卷积核

(mnist 0,2)-con(5*5)*n-30*2-(1,0)(0,1)

 

二分类卷积核极限数量实验

(mnist 0,2)-con(3*3)*n-30*2-(1,0)(0,1)

 

/**/

实验:3*3卷积核10分类9*9图片卷积核数量最优值 

 

估算神经网络卷积核数量的近似方法

3*3卷积核5分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值