计算硼原子基态能级B---动能和势能

该博客探讨了硼原子的核外电子分布情况,详细列出了五个电子的主量子数、角量子数和磁量子数。根据这些量子数,进一步计算了硼原子的总能量,其中涉及了动能和势能的求和。最后,通过特定的函数计算得到能量值为-29.1,并引用了徐光宪的《量子化学》作为理论依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设B原子核外5个电子的轨道分别是

 

 这5个电子的主,角,磁量子数分别是(1,0,0), (1,0,0), (2,0,0), (2,0,0), (2,1,0).

硼原子的能量为

其中E1=E2,E3=E4,

J13=J14=J23=J24,J15=J25,J34=J45,

K13=K14=K23=K24,k15=K25,K35=K45

因此

其中动能+势能为

 =2*(-12.5)+2*(-1.367)-1.367=-29.1

因此

double fh=hin(fx1,fx1)*2+hin(fx2,fx2)*2+hin(fx3,fx3);

fh=-29.1

*徐光宪《量子化学》

参考资源链接:[高斯展开法求解薛定谔方程的Mathematica实现与算法探讨](https://wenku.csdn.net/doc/6yqs6urhqq?utm_source=wenku_answer2doc_content) 在量子化学物理领域中,通过高斯展开法结合Mathematica软件求解二维氢原子的薛定谔方程是一种常用的技术手段。为了帮助你掌握这一技术,建议参考《高斯展开法求解薛定谔方程的Mathematica实现与算法探讨》。该文详细介绍了高斯展开法的数学原理计算步骤,特别是在处理多体问题广义矩阵本征值问题上的应用。下面是进行数值求解的步骤相关技术细节: 1. 首先,你需要在Mathematica中定义氢原子势能函数相关的物理常数。 2. 接着,选择合适的高斯基函数作为波函数的展开基,并确定高斯基数。高斯基函数的参数(如宽度中心位置)需要合理选择,以确保它们能够覆盖电子的运动范围。 3. 利用Mathematica编写程序来构建哈密顿矩阵。这涉及到将动能势能项在高斯基函数上的展开,以及对哈密顿矩阵的元素进行数值积分计算。 4. 对构建好的哈密顿矩阵进行对角化,以求得体系的本征值,这些本征值对应于不同量子能量。 5. 计算完成后,分析得到的本征值,选择基对应的能量最小值,以及对应的本征矢(波函数)。 6. 利用Mathematica的绘图功能,可视化波函数在二维空间中的分布。 通过以上步骤,你可以使用Mathematica软件高斯展开法求解二维氢原子的薛定谔方程,获得其能级波函数。这个过程不仅需要对高斯展开法有深入的理解,还需要熟练掌握Mathematica软件在物理化学领域的数值计算功能。文章中提到的案例分析,如氢原子Cornell势场下的粲偶素问题,可以为你提供实战经验,帮助你理解理论与实际应用之间的联系。 参考资源链接:[高斯展开法求解薛定谔方程的Mathematica实现与算法探讨](https://wenku.csdn.net/doc/6yqs6urhqq?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值