QSAR生命的发动机卟啉c20h14n4---用反向传导做卟啉的分子模型

标签: QSAR 卟啉 c20h14n4 分子模拟 定量构效
5人阅读 评论(0) 收藏 举报
分类:




卟啉是一种非常重要的化学物质,是血红素,叶绿素,血蓝素,维生素B12的核心结构,如果没有卟啉也许也可能有生命但肯定不是现在的样子。 如此神奇的物质到底是如何作用的,按照QSAR的原理,结构决定分子的一切,就用神经网络的反向传导原理去模拟卟啉的网络结构看看平衡态的单双键的键值到底是多少。

虽然很难说这么算出来的值和实际的化学物质的键值有什么联系,但是就像破译密码,去分析一下字母出现的频率对破译总是有帮助的。





将卟啉的分子旋转很容易观察到这种结构的高度对称性,根据这种对称性由神经网络的反向传导原理做出网络结构





这是至今为止用这种办法模拟的最复杂的分子,有38个原子,通过用原子反向传导的启动顺序来实现结构的对称性,

第一步:n31,c33,c34

第二步:c32,c35 ,h33,h31,h34

第三步:cb,cc

第四步:c25,c42,hcb,hcc

第五步:n21,n41,c24,c43

第六步:c23,c44,h24,h43

第七步:c22,c45,h23,h44

第八步:ca,cd

第九步:c12,c15,hca,hcd

第十步:c13,c14,n11

用这个顺序分10次启动着38个网络可以得到相对对称性比较强的结果,这个网络的计算速度很慢只收集了20组数据,也许数据再多些对称性还会更强










具体数据



fff31[0] fff31[3] fff31[k31-1] fff32[0] fff32[2] fff32[3] fff33[0]
0.50019965 0.49999936 0.50003875 0.50048135 0.50032246 0.50042307 0.50010892
0.50010612 0.49999967 0.4998955 0.50003275 0.49995561 0.50000973 0.49954929
0.50000252 0.4999985 0.49967599 0.49989962 0.49898636 0.49921918 0.49977703
0.50042953 0.50341906 0.50020105 0.50094352 0.50075112 0.50073435 0.50018997
0.50004792 0.49999935 0.49987747 0.5001011 0.49989094 0.49987704 0.49993117
0.50115668 0.49999601 0.50016529 0.50000657 0.50021275 0.50006499 0.49986455
0.5000539 0.49999852 0.49997342 0.49990866 0.49985083 0.49979737 0.49978022
0.50004478 0.49999899 0.50006119 0.50023457 0.49987327 0.49987355 0.49986672
0.50002944 0.49999875 0.49999546 0.50022422 0.49991016 0.49984897 0.49981
0.49996945 0.49987321 0.50008228 0.49994547 0.50029236 0.50024357 0.50042444
0.50061788 0.49999895 0.50014232 0.49985192 0.50088449 0.5006523 0.49984362
0.49997235 0.49999943 0.50050985 0.49990911 0.50001606 0.49998451 0.50010931
0.49976872 0.49999749 0.49984323 0.50010407 0.49989588 0.49997081 0.49976063
0.50064954 0.49999926 0.49998032 0.49994929 0.50045048 0.50035429 0.49977302
0.50001121 0.49999954 0.50005306 0.50014886 0.50005381 0.50001695 0.49998713
0.50003148 0.49999973 0.49970092 0.49985557 0.49997962 0.49996956 0.49984922
0.50053 0.49999909 0.50014123 0.50007013 0.50010349 0.5000875 0.49990008
0.50073978 0.49999844 0.50005865 0.50018205 0.4999626 0.50011862 0.49996281
0.49997846 0.49999926 0.50002686 0.4995364 0.49995221 0.49999518 0.49990723
0.50031286 0.49999957 0.50008032 0.50008314 0.50031622 0.50027187 0.49991514
             
0.50023261 0.50016361 0.50002516 0.50007342 0.50008304 0.50007567 0.49991553


fff33[1] fff33[k33-2] fff35[2] fff35[3] fff35[k35-1] fff34[1] fffcb[0]
0.50006506 0.49999942 0.50025393 0.5006656 0.50016661 0.49984494 0.50044868
0.49958234 0.49999958 0.49999794 0.49994297 0.50001034 0.49999937 0.50025687
0.49986515 0.49999856 0.49998205 0.50005606 0.49998829 0.49999847 0.50011179
0.50013178 0.49999741 0.5008465 0.5007784 0.50017728 0.49977348 0.50088464
0.49984447 0.49999914 0.50016527 0.50007667 0.50006144 0.49999919 0.50020863
0.49989821 0.49999593 0.5001718 0.50023535 0.5001552 0.49999634 0.50094277
0.49985058 0.4999985 0.50006598 0.4999732 0.50008298 0.49999855 0.50017652
0.49995062 0.49999913 0.49991282 0.50008138 0.49998608 0.4999993 0.50012143
0.49988395 0.49959695 0.49985779 0.49996588 0.50000778 0.49999895 0.50038103
0.500325 0.49982716 0.50022117 0.50047745 0.50050116 0.49999953 0.50032956
0.49993679 0.49935859 0.49994412 0.49990603 0.49997023 0.49999912 0.50136799
0.50015923 0.4999995 0.50000371 0.50008705 0.5001555 0.49996428 0.50031738
0.49985865 0.49999794 0.50008964 0.49994859 0.49988112 0.49999698 0.50059988
0.49986914 0.49974864 0.49985469 0.50004765 0.50008088 0.49999928 0.50021728
0.49997176 0.49999931 0.50013645 0.50013885 0.50002452 0.49999962 0.50032392
0.49989511 0.4998048 0.50001424 0.50000602 0.49987978 0.49999968 0.50016511
0.49999887 0.49986126 0.49999536 0.49992045 0.50002578 0.4999994 0.49973779
0.49986386 0.49987657 0.50012103 0.50000727 0.50022788 0.49999827 0.49946778
0.4999935 0.4995214 0.49996289 0.50002233 0.49999887 0.49999904 0.50061912
0.49998683 0.49986337 0.50002062 0.49999628 0.50003708 0.49999971 0.50023305
             
0.49994655 0.49987216 0.5000809 0.50011667 0.50007094 0.49997817 0.50034556


fffcb[1] fffcc[kcc-1] fffcc[kcc-2] fff23[0] fff23[1] fff23[k23-2] fff23[k23-1]
0.49999915 0.50073138 0.49999922 0.50040289 0.50043833 0.4999995 0.50007386
0.49999962 0.50007961 0.49999948 0.49993656 0.49997129 0.49950055 0.50005679
0.49999969 0.50001437 0.49999868 0.50003959 0.50007342 0.49999844 0.50009282
0.49999643 0.50001733 0.49999625 0.5008443 0.50085125 0.49999682 0.50142912
0.49999895 0.50088103 0.49999914 0.49995281 0.49991245 0.49980069 0.49997439
0.49999558 0.50012657 0.49999711 0.50022333 0.50016094 0.4999964 0.49988615
0.49999869 0.50022729 0.49999882 0.49991694 0.4998907 0.49958297 0.49993646
0.49999945 0.49992766 0.49999931 0.49993298 0.4998538 0.49960473 0.50001209
0.49999877 0.50005185 0.49999829 0.50005504 0.50014444 0.4996862 0.50020586
0.49999949 0.49998917 0.49999953 0.50020001 0.50023592 0.4999996 0.50008233
0.49911899 0.49989181 0.49999908 0.5000246 0.50004223 0.49999902 0.50002788
0.49999941 0.50013054 0.49993168 0.50041392 0.50027112 0.49999957 0.50047726
0.4999969 0.49991814 0.49999812 0.50056221 0.5006461 0.49999692 0.50012349
0.49999893 0.50128043 0.4999993 0.50025034 0.50021646 0.49999891 0.50010424
0.49999966 0.50067906 0.49999955 0.5000392 0.50014251 0.49999951 0.50036009
0.49999962 0.49980864 0.49999973 0.50007426 0.49997496 0.49984161 0.49992156
0.49986741 0.49998809 0.49999914 0.49990143 0.49987844 0.49999913 0.50003671
0.4995979 0.50008517 0.49999866 0.50013036 0.50008033 0.49999833 0.50016058
0.49999901 0.50122336 0.49999919 0.50000631 0.50001812 0.49962438 0.49990265
0.49999971 0.50080529 0.4999996 0.50027203 0.5001783 0.49999962 0.50036147
             
0.49992817 0.50029284 0.49999549 0.50015896 0.50014906 0.49988115 0.50016129




fff22[2] fff22[3] fff22[k22-1] fff25[0] fff25[1] fff25[k25-1] fff24[1]
0.49992617 0.49989369 0.50010548 0.5000196 0.5000264 0.50043152 0.49999944
0.50026909 0.50036236 0.50084211 0.49988071 0.49990175 0.50024929 0.49999964
0.4998901 0.49984563 0.49931961 0.50012875 0.50026516 0.50011945 0.50281136
0.50056616 0.50071765 0.50162348 0.50011622 0.50024094 0.50085211 0.49999548
0.4999439 0.50003387 0.50058948 0.49987269 0.49991388 0.50018269 0.49999896
0.49993821 0.4998576 0.49956177 0.50111962 0.50141685 0.50093453 0.50361099
0.50033323 0.50057982 0.50038767 0.49894098 0.49834126 0.50006932 0.49999828
0.50048478 0.50033193 0.50025575 0.49840564 0.49856365 0.50006533 0.499999
0.50066482 0.50054869 0.50117947 0.50021016 0.50027769 0.50037132 0.49999884
0.49993777 0.50000134 0.50008677 0.5000354 0.50000781 0.50031343 0.49999954
0.49977988 0.499753 0.50024421 0.50020346 0.50043235 0.50134989 0.50246726
0.50027269 0.50030586 0.50010064 0.49993845 0.50005384 0.50031622 0.49999962
0.49987256 0.50001043 0.50013767 0.50018258 0.50016619 0.50058406 0.49999808
0.49997636 0.49993806 0.5000449 0.50001943 0.5000611 0.50019331 0.49999884
0.50020027 0.5002892 0.50008556 0.49994761 0.49996279 0.50031366 0.4988074
0.50020502 0.50029231 0.50035448 0.50004077 0.50003246 0.50015676 0.49999955
0.49998177 0.50004386 0.50017051 0.50005986 0.50006146 0.49974755 0.49965503
0.49989585 0.49994097 0.50008219 0.49990466 0.49988534 0.49947531 0.50283988
0.50035826 0.50055529 0.5002116 0.49974637 0.49976497 0.50061856 0.49999898
0.50021103 0.50019332 0.50010669 0.49956958 0.49961353 0.50022776 0.49999964
             
0.5001354 0.50017474 0.5002745 0.49991713 0.49994947 0.5003286 0.50050879


fff43[0] fff43[1] fff43[k43-2] fff43[k43-1] fff41[0] fff41[1] fff41[k41-1]
0.49997106 0.5000213 0.49971931 0.49992479 0.50072746 0.50083917 0.49968088
0.50029626 0.50044224 0.49999955 0.50017573 0.50012413 0.50010448 0.50010565
0.49994049 0.49985167 0.49999798 0.49996012 0.50033869 0.50055936 0.50027846
0.50053196 0.50054944 0.4999964 0.49994252 0.50057464 0.50049491 0.50058502
0.49993888 0.49999225 0.49941118 0.49959321 0.50049813 0.50062439 0.50054859
0.50100501 0.50107215 0.49999538 0.50028318 0.50052636 0.50042154 0.50044409
0.50049902 0.50049526 0.4999987 0.4999205 0.50035989 0.50024596 0.50020299
0.5001435 0.50006338 0.49999926 0.49996017 0.50017791 0.5001548 0.50017397
0.50009072 0.50004057 0.49999875 0.50000425 0.50046308 0.50046066 0.50059627
0.49995016 0.50004745 0.499177 0.49907509 0.50026593 0.50018547 0.50015502
0.50055341 0.50047726 0.49999856 0.50014116 0.50025657 0.50028526 0.50020624
0.50045895 0.5004191 0.49999957 0.50048557 0.500311 0.50039287 0.50033015
0.50077521 0.50069712 0.49999777 0.50006397 0.50030001 0.50033105 0.50029139
0.5000031 0.49997521 0.49965745 0.49943978 0.50018407 0.4998656 0.49977361
0.50027239 0.50021373 0.49999945 0.5004268 0.5001096 0.49989828 0.50004256
0.50003337 0.50004132 0.4999177 0.49979565 0.50019766 0.50023264 0.50013589
0.50035891 0.50031288 0.49999941 0.50007948 0.50019742 0.50022202 0.50025759
0.50003675 0.50007735 0.49999869 0.50013593 0.50062461 0.50048221 0.50046413
0.50008891 0.50001298 0.49967727 0.49989978 0.5010638 0.50077961 0.50017017
0.4999921 0.50008221 0.49960687 0.4997475 0.50010692 0.49989845 0.49992292
             
0.50024701 0.50024424 0.49985731 0.49995276 0.50037039 0.50032394 0.50021828


fff45[2] fff45[3] fff45[k45-1] fff44[1] fffca[0] fffca[1] fffcd[kcd-1]
0.49996633 0.50006436 0.49985917 0.49999931 0.50031605 0.4999993 0.49987055
0.50011105 0.50011398 0.4998191 0.49999947 0.50032817 0.49999965 0.49999359
0.49968582 0.49997216 0.50023153 0.49978231 0.5004906 0.49999881 0.49996756
0.49987465 0.500059 0.50129321 0.49999691 0.50086156 0.49842741 0.50007455
0.50008382 0.50001283 0.50006541 0.49999911 0.49981409 0.49982699 0.50002393
0.49992609 0.50018966 0.50007258 0.49999721 0.50065531 0.49999682 0.49999379
0.50018118 0.50008648 0.50002576 0.49999857 0.50056506 0.49999847 0.49973498
0.50007352 0.50012303 0.49905665 0.49899029 0.50032759 0.49999907 0.49994671
0.49989926 0.5000607 0.50010489 0.49972002 0.50052037 0.49999837 0.50007799
0.50002909 0.49999735 0.4999068 0.49999954 0.50027719 0.49999961 0.4998546
0.50014378 0.50009536 0.49960663 0.49999886 0.50043137 0.49999898 0.49989525
0.50018819 0.49993146 0.49941147 0.49999964 0.50018834 0.4999994 0.49987623
0.49986169 0.49991328 0.49982653 0.49999725 0.5004574 0.49999766 0.49937213
0.50002925 0.50006435 0.50004791 0.499999 0.50031794 0.499999 0.49986168
0.50001201 0.50000082 0.49998205 0.49999957 0.50060691 0.49999949 0.4998989
0.49999527 0.50003528 0.50003613 0.49999965 0.5001794 0.49999907 0.50048386
0.50002863 0.50007962 0.50004981 0.49999939 0.50045939 0.49999928 0.49949244
0.50013691 0.49979306 0.50028974 0.49957603 0.50033612 0.49999838 0.49984085
0.49999836 0.50002775 0.50004129 0.49999875 0.50075727 0.49999904 0.50000007
0.50000969 0.50005036 0.50002828 0.49999971 0.50012856 0.4999996 0.49994021
             
0.50001173 0.50003354 0.49998775 0.49990253 0.50040094 0.49991172 0.49990999



fffcd[kcd-2] fff13[0] fff13[1] fff13[k13-2] fff13[k13-1] fff11[0] fff11[3]
0.49999922 0.5004933 0.4999993 0.49998591 0.50007549 0.50029879 0.49999936
0.49999949 0.50028044 0.49999957 0.49988437 0.49990008 0.50031679 0.49999942
0.49953307 0.50026401 0.50277956 0.50009305 0.50016632 0.50049142 0.49999851
0.49999643 0.50006157 0.49999612 0.50019271 0.50027622 0.50083577 0.4999971
0.49999925 0.50043567 0.49999919 0.49994416 0.49987041 0.49982186 0.49999921
0.49999677 0.50091405 0.49999645 0.49979665 0.49977624 0.50061919 0.49999585
0.4999988 0.50068305 0.49999839 0.50012808 0.50011691 0.50052059 0.49999862
0.49999934 0.50048616 0.49999903 0.49999819 0.50008455 0.50031137 0.49999924
0.49964084 0.50062664 0.49999829 0.50011285 0.50001105 0.50050133 0.49999894
0.4999996 0.50032619 0.49999958 0.50006047 0.50002944 0.50026452 0.49999939
0.49999871 0.50045614 0.49999904 0.49998842 0.50001623 0.50039865 0.49999888
0.49999957 0.49994903 0.49999958 0.50005089 0.50003174 0.50017595 0.49999954
0.49999704 0.50084742 0.49999696 0.50023996 0.49994657 0.50044015 0.49999774
0.4999993 0.49987357 0.49999902 0.50003703 0.50003293 0.50029987 0.49999911
0.49999948 0.50043561 0.49999963 0.50019062 0.50023792 0.50060331 0.49999959
0.49999957 0.50000763 0.49999968 0.49998734 0.49997155 0.50016754 0.49999964
0.49999924 0.50028011 0.49999907 0.49993145 0.50002786 0.50044911 0.49999929
0.49975496 0.49999903 0.49999848 0.50003359 0.50009362 0.50031033 0.49999806
0.49999892 0.50050408 0.4999991 0.49956865 0.49979302 0.50073476 0.4999992
0.49999963 0.50023114 0.49999969 0.49998138 0.50000761 0.50011775 0.49999955
             
0.49994546 0.50035774 0.50013779 0.50001029 0.50002329 0.50038395 0.49999881



fff11[k11-1] fff14[0] fff14[1] fff14[k14-2] 迭代次数
0.49971593 0.50000549 0.5000339 0.49999936 44108166
0.49998395 0.50001542 0.50001887 0.49999949 66937874
0.50005091 0.50044628 0.50063103 0.49999817 18384926
0.50085759 0.50016079 0.49975235 0.49965013 9723685
0.49997969 0.49989575 0.49987961 0.49999911 36257843
0.49926504 0.49992108 0.50012411 0.49999741 8300326
0.49987796 0.50003816 0.50012632 0.49999885 19494573
0.49992699 0.50010562 0.4999931 0.49999901 35411263
0.50061301 0.50056219 0.50057442 0.49999868 22619520
0.49979945 0.50005131 0.4999224 0.4999995 56931165
0.49966922 0.50011232 0.50007893 0.49999869 25758383
0.50002018 0.49967318 0.49976008 0.49962138 59195356
0.49928664 0.50022612 0.50014007 0.4999968 12364981
0.49986298 0.4994961 0.49971089 0.49944753 34545786
0.49990148 0.50001138 0.50004109 0.49999966 67322789
0.50033006 0.50006437 0.49985019 0.49988136 83398458
0.49986927 0.5006338 0.50056939 0.49999942 39325217
0.50042237 0.49998445 0.50011196 0.49948588 17928160
0.50003741 0.49998486 0.49998489 0.4999992 29406931
0.49983431 0.50001848 0.50000822 0.49999971 89129362
         
0.49996522 0.50007036 0.50006559 0.49990347 38827238.2


查看评论

sybyl教程教程

  • 2012年11月29日 00:09
  • 303KB
  • 下载

梯度下降法和反向传导法

最近在看关于CNN的一些论文,经常遇到一些概念不明不白的,所以下决心把那些基础概念整明白。 本次博客主要是先介绍梯度下降法然后介绍反向传导法。其实从某种方向上看两者是很相似的。 一,梯度下...
  • w417950004
  • w417950004
  • 2016-05-16 11:09:28
  • 2031

UFLDL 教程学习笔记(二)反向传导算法

UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授编写的一套教程,内...
  • peghoty
  • peghoty
  • 2013-09-03 23:33:02
  • 11390

MATLAB建立的发动机的模型

  • 2013年08月07日 15:40
  • 65KB
  • 下载

读《计算机辅助药物分子设计》

1.      药物设计方法主要有:基于小分子的药物设计方法和基于受体结构的药物设计方法 1)        基于小分子的药物设计方法(先导化合物的优化),主要包括 l  定量构效关系(QSAR)...
  • lirong0943
  • lirong0943
  • 2013-10-06 21:13:28
  • 586

用反向传导做分子模拟:苯胺(C6H5NH2)和硝基苯(C6H5NO2)

-NH2有给电子效应是一个强邻对位定位基团,-NO2有吸电子效应是一个肩位定位基团,所以分别制作了苯胺和硝基苯的模型用来检验这个模型是不是会对定位效应有什么响应。 硝基苯的模型 收敛标准...
  • georgesale
  • georgesale
  • 2018-01-22 21:35:09
  • 202

用反向传导分子模型去计算基团的定位效应

F,Cl,Br都是邻对位定位基团,而且都有吸电子效应,并且F>CL>Br,所以分别制作了C6H5F,C6H5CL,C6H5Br的模型去计算是不是能对的上。 3个模型分别如下 ...
  • georgesale
  • georgesale
  • 2018-01-28 11:27:03
  • 172

发动机模型 stl

  • 2016年02月08日 21:13
  • 34.12MB
  • 下载

softmax函数与交叉熵的反向梯度传导

这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流! softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率...
  • fireflychh
  • fireflychh
  • 2017-06-27 14:18:24
  • 703

大数据与人工智能基础系列7 反向传导算法理论推导

文章来源:http://ufldl.stanford.edu/wiki/index.php/%E5%8F%8D%E5%90%91%E4%BC%A0%E5%AF%BC%E7%AE%97%E6%B3%95...
  • yangdelong
  • yangdelong
  • 2017-08-27 13:35:24
  • 272
    个人资料
    持之以恒
    等级:
    访问量: 6467
    积分: 629
    排名: 8万+
    最新评论