制作一个5层网络和一个3层网络
图中左边的5层网络很显然可以看作是由两个右边的3层网络组合而成,所以左边的网络的迭代次数和右边的网络的迭代次数有什么关系?
在《测量一组5层网络的迭代次数》测量了输入固定为0.1时5层网络和3层网络收敛迭代次数之间的关系。本文测量当输入是0-1之间的随机数时对迭代次数的影响。
将左边的5层网络写成
(r)-3*6*3*6*3-(3*k),k∈{0,1}
意思是向网络输入0到1的随机数r,输出是1,0,0。
右边的3层网络写成
(r)-3*6*3-(3*k),k∈{0,1}
其中r的初始化方法是
Random rand1 =new Random();
int ti1=rand1.nextInt(98)+1;
r=((double)ti1/100);
用这种办法制作了三组网络
(r)-2-10-2-10-2-(2*k),k∈{0,1}
(r)-2-10-2-(2*k),k∈{0,1}
(r)-3-10-3-10-3-(3*k),k∈{0,1}
(r)-3-10-3-(3*k),k∈{0,1}
(r)-4-10-4-10-4-(4*k),k∈{0,1}
(r)-4-10-4-(4*k),k∈{0,1}
用来比较
(r)-x-10-x-10-x-(x*k),k∈{0,1}
(r)-x-10-x-(x*k),k∈{0,1}
这两类网络迭代次数的关系。
具体的实验过程
网络的收敛标准是
if (Math.abs(f4[0]-y[0])< δ && Math.abs(f4[1]-y[1])< δ && Math.abs(f4[2]-y[2])< δ )
因为对应每个收敛标准δ都有一个特征的迭代次数n与之对应因此可以用迭代次数曲线n(δ)来评价网络性能。
具体进样顺序 | |||
δ=0.5 | 迭代次数 | ||
r | 1 | 判断是否达到收敛 | |
梯度下降 | |||
r | 2 | 判断是否达到收敛 | |
梯度下降 | |||
…… | |||
每当网路达到收敛标准记录迭代次数 | |||
将这一过程重复199次 | |||
δ=0.4 | |||
…… | |||
δ=1e-7 |
本文尝试了δ从1e-7到0.5的共35个值,当网络满足条件收敛是记录迭代次数
首先观察5层网络迭代次数的变化
r-2-10-2-10-2 | r-3-10-3-10-3 | r-4-10-4-10-4 | 0.1-2-10-2-10-2 | 0.1-3-10-3-10-3 | 0.1-4-10-4-10-4 | |||||||||||
δ | 迭代次数n | 迭代次数n | 迭代次数n | r2/r2 | r3/r2 | r4/r2 | δ | 迭代次数n | 迭代次数n | 迭代次数n | 0.1-2/0.1-2 | 0.1-3/0.12 | 0.1-4/0.1-2 | r-2/0.1-2 | r-3/0.1-3 | r-4/0.1-4 |
0.5 | 1.904522613 | 1.869346734 | 3 | 1 | 0.981530343 | 1.575197889 | 0.5 | 1.934673367 | 1.959798995 | 3 | 1 | 1.012987013 | 1.550649351 | 0.984415584 | 0.953846154 | 1 |
0.4 | 5.341708543 | 5.331658291 | 7 | 1 | 0.998118532 | 1.310442145 | 0.4 | 5.371859296 | 5.341708543 | 7 | 1 | 0.994387278 | 1.303086997 | 0.994387278 | 0.998118532 | 1 |
0.3 | 10.34673367 | 10.22613065 | 12 | 1 | 0.988343856 | 1.159786304 | 0.3 | 10.27135678 | 10.18090452 | 11 | 1 | 0.991193738 | 1.070939335 | 1.007338552 | 1.004442251 | 1.090909091 |
0.2 | 18.70854271 | 18.30653266 | 20 | 1 | 0.978511953 | 1.069030352 | 0.2 | 18.66331658 | 18.52763819 | 20 | 1 | 0.99273021 | 1.071620894 | 1.002423263 | 0.988066178 | 1 |
0.1 | 40.25125628 | 38.37688442 | 38 | 1 | 0.953433208 | 0.944069913 | 0.1 | 40.10050251 | 38.36683417 | 39 | 1 | 0.956766917 | 0.972556391 | 1.003759399 | 1.000261952 | 0.974358974 |
0.01 | 325.8040201 | 268.6934673 | 235 | 1 | 0.824708876 | 0.721292512 | 0.01 | 325.6130653 | 268.5025126 | 237 | 1 | 0.824606078 | 0.727857771 | 1.000586447 | 1.000711184 | 0.991561181 |
0.001 | 2279.577889 | 1680.497487 | 1398 | 1 | 0.737196783 | 0.613271434 | 0.001 | 2280.115578 | 1684.38191 | 1406 | 1 | 0.738726548 | 0.616635408 | 0.999764183 | 0.997693859 | 0.9943101 |
1.00E-04 | 15912.24623 | 12004.45729 | 10590 | 1 | 0.75441626 | 0.665525146 | 1.00E-04 | 15835.47739 | 12056.8191 | 10609 | 1 | 0.76138021 | 0.669951384 | 1.004847902 | 0.995657079 | 0.998209068 |
9.00E-05 | 17423.96482 | 13189.36181 | 11673 | 1 | 0.756966738 | 0.669939369 | 9.00E-05 | 17342.0603 | 13253.43719 | 11717 | 1 | 0.764236599 | 0.675640598 | 1.004722883 | 0.995165376 | 0.996244773 |
8.00E-05 | 19282.14573 | 14663.1608 | 13043 | 1 | 0.760452753 | 0.676428868 | 8.00E-05 | 19208.1206 | 14739.47739 | 13077 | 1 | 0.767356562 | 0.680805805 | 1.003853846 | 0.9948223 | 0.997400015 |
7.00E-05 | 21687.30653 | 16544.53266 | 14783 | 1 | 0.762867101 | 0.681642968 | 7.00E-05 | 21562.95477 | 16633.47236 | 14844 | 1 | 0.771391145 | 0.688402872 | 1.005766917 | 0.994652969 | 0.995890596 |
6.00E-05 | 24788.30151 | 19034.80402 | 17128 | 1 | 0.767894646 | 0.690971102 | 6.00E-05 | 24676.82412 | 19138.08543 | 17197 | 1 | 0.775548966 | 0.696888705 | 1.004517493 | 0.994603357 | 0.995987672 |
5.00E-05 | 29117.86935 | 22492.8392 | 20378 | 1 | 0.772475449 | 0.699845162 | 5.00E-05 | 28974.85427 | 22613.09045 | 20480 | 1 | 0.780438453 | 0.706819776 | 1.004935834 | 0.994682228 | 0.995019531 |
4.00E-05 | 35437.03015 | 27629.55779 | 25185 | 1 | 0.779680399 | 0.710697254 | 4.00E-05 | 35289.97487 | 27783.49749 | 25306 | 1 | 0.787291507 | 0.717087504 | 1.004167055 | 0.994459312 | 0.995218525 |
3.00E-05 | 45809.18593 | 36073.57286 | 33209 | 1 | 0.787474654 | 0.724941937 | 3.00E-05 | 45565.71357 | 36295.21106 | 33318 | 1 | 0.796546531 | 0.731207686 | 1.005343324 | 0.993893459 | 0.996728495 |
2.00E-05 | 65988.56784 | 52783.36181 | 49229 | 1 | 0.799886458 | 0.746023161 | 2.00E-05 | 65556.1005 | 53122.43719 | 49468 | 1 | 0.810335526 | 0.754590337 | 1.006596905 | 0.993617097 | 0.995168594 |
1.00E-05 | 124218.0452 | 102095.9497 | 97192 | 1 | 0.821909164 | 0.782430603 | 1.00E-05 | 123256.9196 | 102725.196 | 97258 | 1 | 0.833423359 | 0.789067261 | 1.007797742 | 0.99387447 | 0.999321393 |
9.00E-06 | 136835.3719 | 112952.5578 | 107913 | 1 | 0.825463155 | 0.788633805 | 9.00E-06 | 135849.9447 | 113718.9146 | 108216 | 1 | 0.837092093 | 0.796584792 | 1.007253792 | 0.993260956 | 0.997200044 |
8.00E-06 | 152610.0352 | 126633.8995 | 121242 | 1 | 0.829787499 | 0.794456274 | 8.00E-06 | 151453.6382 | 127307.3518 | 121518 | 1 | 0.840569783 | 0.802344542 | 1.00763532 | 0.994710028 | 0.997728732 |
7.00E-06 | 172631.2513 | 143969.5829 | 138604 | 1 | 0.833971728 | 0.802890548 | 7.00E-06 | 171409.3065 | 144868.4121 | 139247 | 1 | 0.845160715 | 0.812365459 | 1.007128812 | 0.993795547 | 0.995382306 |
6.00E-06 | 199241.1256 | 167092.598 | 161638 | 1 | 0.838645122 | 0.811268254 | 6.00E-06 | 197814.8894 | 168071.0653 | 161784 | 1 | 0.849638093 | 0.817855524 | 1.007209954 | 0.994178253 | 0.999097562 |
5.00E-06 | 236247.5427 | 199373.392 | 193006 | 1 | 0.843917315 | 0.816965111 | 5.00E-06 | 234464.0503 | 200668.6884 | 193666 | 1 | 0.855861221 | 0.825994432 | 1.007606677 | 0.9935451 | 0.996592071 |
4.00E-06 | 291092.995 | 247769.0754 | 240321 | 1 | 0.851168113 | 0.825581529 | 4.00E-06 | 288965.3467 | 249317.9447 | 241691 | 1 | 0.862795306 | 0.836401329 | 1.007362988 | 0.993787574 | 0.994331605 |
3.00E-06 | 381793.9749 | 328359.2915 | 320678 | 1 | 0.860043147 | 0.839924203 | 3.00E-06 | 378816.8543 | 330180.2663 | 322513 | 1 | 0.871609229 | 0.851369194 | 1.007858997 | 0.994484907 | 0.994310307 |
2.00E-06 | 560602.8794 | 488816 | 481138 | 1 | 0.871947002 | 0.858251032 | 2.00E-06 | 556550.6985 | 491437.4623 | 482398 | 1 | 0.883005742 | 0.866763803 | 1.007280884 | 0.994665726 | 0.997388049 |
1.00E-06 | 1088196.508 | 969244.1558 | 962243 | 1 | 0.890688537 | 0.884254813 | 1.00E-06 | 1080983.186 | 974155.5427 | 964074 | 1 | 0.901175481 | 0.89184921 | 1.006672927 | 0.994958313 | 0.998100768 |
9.00E-07 | 1203908.025 | 1075569.915 | 1068340 | 1 | 0.893398742 | 0.88739337 | 9.00E-07 | 1208133.623 | 1080634.106 | 1072751 | 1 | 0.894465716 | 0.887940688 | 0.996502375 | 0.995313686 | 0.995888142 |
8.00E-07 | 1348428.719 | 1209469.04 | 1202423 | 1 | 0.89694696 | 0.891721589 | 8.00E-07 | 1353904.367 | 1215191.643 | 1206559 | 1 | 0.897546143 | 0.891170033 | 0.995955661 | 0.995290781 | 0.99657207 |
7.00E-07 | 1534027.111 | 1380826.05 | 1375220 | 1 | 0.900131451 | 0.896476985 | 7.00E-07 | 1539773.07 | 1387027.477 | 1381749 | 1 | 0.900799932 | 0.897371845 | 0.996268308 | 0.99552898 | 0.995274829 |
6.00E-07 | 1780354.844 | 1610095.312 | 1601415 | 1 | 0.904367642 | 0.899492034 | 6.00E-07 | 1786506.508 | 1616167.709 | 1606431 | 1 | 0.904652573 | 0.899202434 | 0.996556596 | 0.996242719 | 0.99687755 |
5.00E-07 | 2125035.533 | 1929071.94 | 1927719 | 1 | 0.907783381 | 0.907146714 | 5.00E-07 | 2133555.362 | 1937818.854 | 1931582 | 1 | 0.90825806 | 0.905334839 | 0.996006746 | 0.995486207 | 0.998000085 |
4.00E-07 | 2637184.055 | 2409909.352 | 2410357 | 1 | 0.913819173 | 0.913988918 | 4.00E-07 | 2646545.613 | 2418741.794 | 2414921 | 1 | 0.913924091 | 0.9124804 | 0.996462726 | 0.996348332 | 0.998110083 |
3.00E-07 | 3488346.553 | 3209632.161 | 3220585 | 1 | 0.920101289 | 0.923241126 | 3.00E-07 | 3500985.513 | 3222108.256 | 3226161 | 1 | 0.920343213 | 0.921500814 | 0.996389885 | 0.996127971 | 0.99827163 |
2.00E-07 | 5184203.387 | 4811423.382 | 4829216 | 1 | 0.928093098 | 0.931525181 | 2.00E-07 | 5199169.422 | 4828569.704 | 4839273 | 1 | 0.928719438 | 0.930778093 | 0.997121457 | 0.996448985 | 0.997921795 |
1.00E-07 | 1.02E+07 | 9627046.156 | 9688361 | 1 | 0.943828055 | 0.949839314 | 1.00E-07 | 1.03E+07 | 9653872.432 | 9700878 | 1 | 0.937269168 | 0.941832816 | 0.990291262 | 0.99722119 | 0.998709704 |
很明显当δ<0.1时
r-2-10-2-10-2 > r-3-10-3-10-3 > r-4-10-4-10-4
也就是输入层节点数越少迭代次数越多。
与当输入固定为0.1的数据比较
当δ<0.01时
这组数据同样满足输入层节点数越少迭代次数越多的规律。
再比较随机输入与固定输入迭代次数之间的比例关系(r)-x-10-x-10-x-(x*k),k∈{0,1} / 0.1-x-10-x-10-x-(x*k),k∈{0,1}
从图中明显的观察到随机输入网络(r)-x-10-x-10-x-(x*k),k∈{0,1}的迭代次数是要稍小于固定输入网络0.1-x-10-x-10-x-(x*k),k∈{0,1}的迭代次数。随机输入网络的迭代次数大概要比固定输入0.1的网络的迭代次数要少0.5%。
然后再比较3层网络的数据
r-2-10-2 | r-3-10-3 | r-4-10-4 |
|
|
| 0.1-2-10-2 | 0.1-3-10-3 | 0.1-4-10-4 |
|
|
|
|
|
| ||
δ | 迭代次数n | 迭代次数n | 迭代次数n | r2/r2 | r3/r2 | r4/r2 | δ | 迭代次数n | 迭代次数n | 迭代次数n | 0.1-2/0.1-2 | 0.1-3/0.12 | 0.1-4/0.1-2 | r-2/0.1-2 | r-3/0.1-3 | r-4/0.1-4 |
0.5 | 1.869346734 | 2.040201005 | 3 | 1 | 1.091397849 | 1.604838709 | 0.5 | 1.834170854 | 2.150753769 | 4 | 1 | 1.17260274 | 2.180821918 | 1.019178083 | 0.948598131 | 0.75 |
0.4 | 5.316582915 | 5.577889447 | 7 | 1 | 1.049149338 | 1.316635161 | 0.4 | 5.467336683 | 5.668341709 | 7 | 1 | 1.036764706 | 1.280330882 | 0.972426471 | 0.984042553 | 1 |
0.3 | 10.34673367 | 10.4321608 | 12 | 1 | 1.008256435 | 1.159786304 | 0.3 | 10.3718593 | 10.52763819 | 12 | 1 | 1.015019379 | 1.156976744 | 0.997577519 | 0.990930787 | 1 |
0.2 | 18.5678392 | 18.48241206 | 20 | 1 | 0.995399188 | 1.077131258 | 0.2 | 18.98492462 | 19.09547739 | 21 | 1 | 1.005823187 | 1.106140815 | 0.978030704 | 0.967894737 | 0.952380952 |
0.1 | 39.7839196 | 38.00502513 | 42 | 1 | 0.955286093 | 1.055702918 | 0.1 | 41.81407035 | 41.92964824 | 43 | 1 | 1.002764091 | 1.028361976 | 0.951448143 | 0.906399808 | 0.976744186 |
0.01 | 326.8140704 | 281.0904523 | 347 | 1 | 0.860092872 | 1.061765791 | 0.01 | 405.9145729 | 400.9246231 | 397 | 1 | 0.987706897 | 0.978038303 | 0.805130173 | 0.701105485 | 0.874055416 |
0.001 | 2555.768844 | 1994.175879 | 2942 | 1 | 0.78026457 | 1.151121318 | 0.001 | 3909.160804 | 3785.150754 | 3660 | 1 | 0.968277066 | 0.936262329 | 0.653789642 | 0.526841864 | 0.803825137 |
1.00E-04 | 21902.38693 | 16359.0402 | 23884 | 1 | 0.74690673 | 1.090474754 | 1.00E-04 | 38025.66332 | 35887.74372 | 33662 | 1 | 0.943776928 | 0.885244255 | 0.575989609 | 0.455839195 | 0.709524092 |
9.00E-05 | 23880.13568 | 18649.9598 | 37315 | 1 | 0.780982154 | 1.562595812 | 9.00E-05 | 42192.34171 | 39777.31156 | 37338 | 1 | 0.94276141 | 0.884947327 | 0.565982705 | 0.468859233 | 0.999384006 |
8.00E-05 | 27373.11558 | 20427.95477 | 26333 | 1 | 0.74627803 | 0.962002295 | 8.00E-05 | 47395.70352 | 44621.80905 | 41802 | 1 | 0.941473715 | 0.881978679 | 0.57754424 | 0.45780203 | 0.629945936 |
7.00E-05 | 30471.34171 | 23575.8593 | 46405 | 1 | 0.77370598 | 1.522906357 | 7.00E-05 | 54052.65327 | 50836.96482 | 47443 | 1 | 0.940508222 | 0.877718246 | 0.563734431 | 0.463754266 | 0.978121114 |
6.00E-05 | 33747.86935 | 26453.01508 | 43844 | 1 | 0.783842524 | 1.299163498 | 6.00E-05 | 62950.38191 | 59079.18593 | 55259 | 1 | 0.938504011 | 0.877818344 | 0.536102694 | 0.44775524 | 0.793427315 |
5.00E-05 | 41400.74372 | 31641.95477 | 57098 | 1 | 0.764284695 | 1.379153968 | 5.00E-05 | 75340.25628 | 70575.01005 | 65584 | 1 | 0.936750332 | 0.870504074 | 0.549516895 | 0.448345027 | 0.870608685 |
4.00E-05 | 50904.86935 | 38461.94975 | 63706 | 1 | 0.755565238 | 1.251471634 | 4.00E-05 | 93917.48744 | 87725.11558 | 81242 | 1 | 0.934065827 | 0.865035918 | 0.542016942 | 0.438437151 | 0.784151055 |
3.00E-05 | 68669.09045 | 51233.01508 | 102785 | 1 | 0.746085535 | 1.496816098 | 3.00E-05 | 124764.8342 | 116155.4975 | 107253 | 1 | 0.930995486 | 0.859641266 | 0.550388183 | 0.441072667 | 0.958341492 |
2.00E-05 | 98491.42211 | 74906.1206 | 131495 | 1 | 0.760534461 | 1.335090886 | 2.00E-05 | 186176.5779 | 172366.9598 | 158480 | 1 | 0.925825159 | 0.851234896 | 0.529021552 | 0.434573544 | 0.829726148 |
1.00E-05 | 193272.4774 | 144249.7286 | 203355 | 1 | 0.746354217 | 1.0521674 | 1.00E-05 | 368710.8643 | 338333.7889 | 308464 | 1 | 0.917612747 | 0.836601331 | 0.524184384 | 0.426353304 | 0.65925035 |
9.00E-06 | 206907.4774 | 158850.8543 | 296829 | 1 | 0.767738587 | 1.434597743 | 9.00E-06 | 408984.0804 | 375023.1005 | 341247 | 1 | 0.916962587 | 0.83437722 | 0.505905944 | 0.423576185 | 0.869836218 |
8.00E-06 | 237203.201 | 180718.5427 | 363607 | 1 | 0.761872276 | 1.532892467 | 8.00E-06 | 459388.5276 | 420561.8643 | 382394 | 1 | 0.915481861 | 0.832397801 | 0.516345504 | 0.429707394 | 0.950870045 |
7.00E-06 | 269616.4372 | 202380.0402 | 421455 | 1 | 0.75062204 | 1.563165081 | 7.00E-06 | 524038.9497 | 478899.1457 | 435268 | 1 | 0.913861739 | 0.830602382 | 0.514496942 | 0.422594281 | 0.968265528 |
6.00E-06 | 308451.3015 | 240200 | 405253 | 1 | 0.778729086 | 1.313831383 | 6.00E-06 | 609813.0704 | 556314.598 | 504206 | 1 | 0.912270702 | 0.826820586 | 0.505812874 | 0.431770083 | 0.803744898 |
5.00E-06 | 366383.0905 | 279138.8844 | 438198 | 1 | 0.761877094 | 1.196010437 | 5.00E-06 | 729919.3065 | 664199.0553 | 600920 | 1 | 0.909962306 | 0.823269086 | 0.50195013 | 0.420263899 | 0.729211875 |
4.00E-06 | 441795.6482 | 344849.6935 | 733902 | 1 | 0.780563808 | 1.661179785 | 4.00E-06 | 909130.6181 | 825530.8241 | 744853 | 1 | 0.908044243 | 0.819302513 | 0.485953987 | 0.417730851 | 0.98529777 |
3.00E-06 | 587062.9196 | 459529.0302 | 747879 | 1 | 0.78275942 | 1.273933296 | 3.00E-06 | 1207124.558 | 1091742.894 | 980381 | 1 | 0.904416107 | 0.812162252 | 0.486331684 | 0.420913232 | 0.762845261 |
2.00E-06 | 881343.3819 | 672539.7437 | 1245116 | 1 | 0.763084806 | 1.412747886 | 2.00E-06 | 1799195.739 | 1619069.065 | 1449669 | 1 | 0.899884893 | 0.805731677 | 0.489854085 | 0.415386692 | 0.858896755 |
1.00E-06 | 1691667.427 | 1292568.874 | 2046819 | 1 | 0.764079779 | 1.209941722 | 1.00E-06 | 3559300.412 | 3175825.116 | 2818734 | 1 | 0.892261048 | 0.791934839 | 0.475280879 | 0.407002535 | 0.726148335 |
9.00E-07 | 1861192.327 | 1469246.196 | 2010564 | 1 | 0.789411269 | 1.080255904 | 9.00E-07 | 3947484.774 | 3517441.141 | 3123123 | 1 | 0.891058824 | 0.791167839 | 0.471488159 | 0.417703136 | 0.643767152 |
8.00E-07 | 2080246.372 | 1621744.271 | 2166817 | 1 | 0.779592404 | 1.041615565 | 8.00E-07 | 4433661.618 | 3943425.156 | 3493458 | 1 | 0.889428535 | 0.787939699 | 0.469193762 | 0.411252707 | 0.620249907 |
7.00E-07 | 2464329.97 | 1797949.739 | 3092601 | 1 | 0.72958969 | 1.254945984 | 7.00E-07 | 5056311.834 | 4490016.492 | 3972648 | 1 | 0.888002291 | 0.785680973 | 0.487376976 | 0.40043277 | 0.778473451 |
6.00E-07 | 2925796.92 | 2091886.859 | 2729326 | 1 | 0.714980197 | 0.93284875 | 6.00E-07 | 5882920.477 | 5216202.241 | 4605197 | 1 | 0.886668834 | 0.782807964 | 0.497337493 | 0.401036379 | 0.59266216 |
5.00E-07 | 3289760.563 | 2467525.844 | 3698517 | 1 | 0.750062443 | 1.124251121 | 5.00E-07 | 7040336.97 | 6225307.176 | 5492530 | 1 | 0.884234264 | 0.780151578 | 0.467273168 | 0.396370135 | 0.673372198 |
4.00E-07 | 4007427.271 | 3216941.045 | 5727957 | 1 | 0.802744711 | 1.429335235 | 4.00E-07 | 8766715.804 | 7731842.281 | 6800941 | 1 | 0.881954252 | 0.775768389 | 0.457118419 | 0.416063976 | 0.842230068 |
3.00E-07 | 5245088.296 | 4254122.518 | 6026219 | 1 | 0.811067856 | 1.14892613 | 3.00E-07 | 1.16E+07 | 1.02E+07 | 8973350 | 1 | 0.879310345 | 0.773564655 | 0.452162784 | 0.417070835 | 0.671568478 |
2.00E-07 | 7786895.241 | 5986582.417 | 1.07E+07 | 1 | 0.768802229 | 1.374103499 | 2.00E-07 | 1.73E+07 | 1.52E+07 | 1.32E+07 | 1 | 0.878612717 | 0.76300578 | 0.450109552 | 0.393854106 | 0.810606061 |
1.00E-07 | 1.58E+07 | 1.23E+07 | 2.71E+07 | 1 | 0.778481013 | 1.715189873 | 1.00E-07 | 3.42E+07 | 2.97E+07 | 2.58E+07 | 1 | 0.868421053 | 0.754385965 | 0.461988304 | 0.414141414 | 1.050387597 |
3层随机输入数据比较
r-2-10-2>r-3-10-3但r-4-10-4的数据变的不规则
3层固定输入的数据
这个明显的0.1-2-10-2>0.1-3-10-3>0.1-4-10-4,输入节点数越少迭代次数越多。
比较随机输入和固定输入的比值
若不考虑r-4和0.1-4的值
r-2/0.1-2 > r-3/0.1-3 的值但都接近0.5.
再比较3层网络和5层网络的迭代次数的比值
r-2-10-2 | r-3-10-3 | r-4-10-4 | 0.1-2-10-2 | 0.1-3-10-3 | 0.1-4-10-4 | ||
δ | r-2-10-2-10-2 | r-3-10-3-10-3 | r-4-10-4-10-4 | δ | 0.1-2-10-2-10-2 | 0.1-3-10-3-10-3 | 0.1-4-10-4-10-4 |
0.5 | 0.981530343 | 1.091397849 | 1 | 0.5 | 0.948051948 | 1.097435898 | 1.333333333 |
0.4 | 0.995296331 | 1.046182846 | 1 | 0.4 | 1.01777362 | 1.061147695 | 1 |
0.3 | 1 | 1.02014742 | 1 | 0.3 | 1.009784737 | 1.034057256 | 1.090909091 |
0.2 | 0.992479184 | 1.009607467 | 1 | 0.2 | 1.017232095 | 1.030648224 | 1.05 |
0.1 | 0.988389513 | 0.990310331 | 1.105263158 | 0.1 | 1.04273183 | 1.092861821 | 1.102564103 |
0.01 | 1.003100178 | 1.046138022 | 1.476595745 | 0.01 | 1.246616356 | 1.493187603 | 1.675105485 |
0.001 | 1.121158815 | 1.186658055 | 2.104434907 | 0.001 | 1.714457303 | 2.247204587 | 2.603129445 |
1.00E-04 | 1.376448467 | 1.36274717 | 2.255335222 | 1.00E-04 | 2.401295672 | 2.976551562 | 3.172966349 |
9.00E-05 | 1.37053397 | 1.414015331 | 3.196693224 | 9.00E-05 | 2.432948622 | 3.001282685 | 3.186651873 |
8.00E-05 | 1.419609413 | 1.393148111 | 2.018937361 | 8.00E-05 | 2.467482608 | 3.027367109 | 3.196604726 |
7.00E-05 | 1.405031172 | 1.424993971 | 3.139078671 | 7.00E-05 | 2.506736848 | 3.056305005 | 3.196106171 |
6.00E-05 | 1.361443394 | 1.389718279 | 2.559785147 | 6.00E-05 | 2.55099204 | 3.086995622 | 3.213293016 |
5.00E-05 | 1.421832869 | 1.406756812 | 2.801943272 | 5.00E-05 | 2.600194485 | 3.12098031 | 3.20234375 |
4.00E-05 | 1.436488022 | 1.392058101 | 2.529521541 | 4.00E-05 | 2.661307858 | 3.157454011 | 3.210384889 |
3.00E-05 | 1.499024465 | 1.420236783 | 3.095094703 | 3.00E-05 | 2.738129713 | 3.200298169 | 3.219070773 |
2.00E-05 | 1.492552806 | 1.419123717 | 2.67108818 | 2.00E-05 | 2.839958089 | 3.244711066 | 3.203687232 |
1.00E-05 | 1.555913049 | 1.412883949 | 2.092301836 | 1.00E-05 | 2.991400933 | 3.293581342 | 3.171605421 |
9.00E-06 | 1.512090584 | 1.406350218 | 2.750632454 | 9.00E-06 | 3.010557577 | 3.297807597 | 3.153387669 |
8.00E-06 | 1.554309326 | 1.42709451 | 2.999018492 | 8.00E-06 | 3.033195723 | 3.303515927 | 3.146809526 |
7.00E-06 | 1.561805497 | 1.405713875 | 3.040713111 | 7.00E-06 | 3.057237442 | 3.305752709 | 3.125869857 |
6.00E-06 | 1.548130691 | 1.437526275 | 2.507164157 | 6.00E-06 | 3.082746057 | 3.309996263 | 3.1165381 |
5.00E-06 | 1.550844027 | 1.400080932 | 2.270385377 | 5.00E-06 | 3.113139543 | 3.309928722 | 3.102867824 |
4.00E-06 | 1.517713088 | 1.391818947 | 3.053840488 | 4.00E-06 | 3.146157934 | 3.311156865 | 3.081840035 |
3.00E-06 | 1.537643227 | 1.39947016 | 2.332180567 | 3.00E-06 | 3.186565076 | 3.306505583 | 3.03981855 |
2.00E-06 | 1.572134954 | 1.375854603 | 2.587856291 | 2.00E-06 | 3.232761622 | 3.294557679 | 3.005130618 |
1.00E-06 | 1.55456061 | 1.333584388 | 2.127133167 | 1.00E-06 | 3.29265104 | 3.260080117 | 2.923773486 |
9.00E-07 | 1.545958901 | 1.366016449 | 1.881951439 | 9.00E-07 | 3.267423983 | 3.254978833 | 2.911321453 |
8.00E-07 | 1.542718827 | 1.34087291 | 1.80204221 | 8.00E-07 | 3.274722887 | 3.245105559 | 2.895389285 |
7.00E-07 | 1.606444862 | 1.30208272 | 2.248804555 | 7.00E-07 | 3.283803265 | 3.237150357 | 2.875086575 |
6.00E-07 | 1.643378526 | 1.299231694 | 1.704321491 | 6.00E-07 | 3.292974557 | 3.227512969 | 2.866725679 |
5.00E-07 | 1.548096732 | 1.279125881 | 1.918597576 | 5.00E-07 | 3.299814523 | 3.212533082 | 2.843539648 |
4.00E-07 | 1.519585735 | 1.334880518 | 2.376393621 | 4.00E-07 | 3.312512643 | 3.196638145 | 2.816216762 |
3.00E-07 | 1.503602987 | 1.325423695 | 1.871156638 | 3.00E-07 | 3.313352757 | 3.165629206 | 2.781432793 |
2.00E-07 | 1.502042775 | 1.244243531 | 2.215680558 | 2.00E-07 | 3.32745456 | 3.147930118 | 2.727682443 |
1.00E-07 | 1.549019608 | 1.277650465 | 2.79717075 | 1.00E-07 | 3.32038835 | 3.07648565 | 2.659553084 |
随机输入3层网络的迭代次数是对应5层网络的迭代次数的大约1.5倍左右
固定输入3层网络的迭代次数是对应5层网络的迭代次数的3倍左右。
这组实验表明3层网络随机输入的迭代次数比固定输入的迭代次数要小的多,甚至小于后者的50%。
而5层网络的随机输入的迭代次数只比固定输入的迭代次数略小,二者相差甚至小于1%,也就是5层网络对输入数据并不敏感。
实验数据 |
学习率 0.1 |
权重初始化方式 |
Random rand1 =new Random(); |
int ti1=rand1.nextInt(98)+1; |
int xx=1; |
if(ti1%2==0) |
{ xx=-1;} |
tw[a][b]=xx*((double)ti1/1000); |
|
dr-2-10-2-10-2
f2[0] f2[1] 迭代次数n 平均准确率p-ave δ 耗时ms/次 耗时ms/199次 耗时 min/199
0.527608315 0.472339838 1.904522613 0 0.5 0.412060302 82 0.001366667
0.619745309 0.379034134 5.341708543 0 0.4 0.391959799 78 0.0013
0.712427458 0.285357852 10.34673367 0 0.3 0.155778894 31 0.000516667
0.806808233 0.19310006 18.70854271 0 0.2 0.236180905 47 0.000783333
0.902011379 0.097776184 40.25125628 0 0.1 0.688442211 142 0.002366667
0.990027433 0.009968527 325.8040201 0 0.01 3.015075377 600 0.01
0.999000529 1.00E-03 2279.577889 0 0.001 15.2361809 3047 0.050783333
0.999900012 1.00E-04 15912.24623 0 1.00E-04 91.9798995 18304 0.305066667
0.999910011 9.00E-05 17423.96482 0 9.00E-05 98.45728643 19609 0.326816667
0.999920009 8.00E-05 19282.14573 0 8.00E-05 109.1306533 21733 0.362216667
0.999930008 7.00E-05 21687.30653 0 7.00E-05 122.4623116 24370 0.406166667
0.999940006 6.00E-05 24788.30151 0 6.00E-05 140.6532663 27990 0.4665
0.999950004 5.00E-05 29117.86935 0 5.00E-05 164.2462312 32700 0.545
0.999960004 4.00E-05 35437.03015 0 4.00E-05 199.3969849 39696 0.6616
0.999970003 3.00E-05 45809.18593 0 3.00E-05 259.8492462 51720 0.862
0.999980002 2.00E-05 65988.56784 0 2.00E-05 375.7236181 74778 1.2463
0.999990001 1.00E-05 124218.0452 0 1.00E-05 703.4974874 140005 2.333416667
0.999991001 9.00E-06 136835.3719 0 9.00E-06 761.959799 151639 2.527316667
0.999992001 8.00E-06 152610.0352 0 8.00E-06 861.0150754 171358 2.855966667
0.999993001 7.00E-06 172631.2513 0 7.00E-06 972.6281407 193560 3.226
0.999994001 6.00E-06 199241.1256 0 6.00E-06 1125.437186 223962 3.7327
0.999995001 5.00E-06 236247.5427 0 5.00E-06 1336.170854 265906 4.431766667
0.999996001 4.00E-06 291092.995 0 4.00E-06 1650.854271 328528 5.475466667
0.999997 3.00E-06 381793.9749 0 3.00E-06 2128.020101 423493 7.058216667
0.999998 2.00E-06 560602.8794 0 2.00E-06 3168.80402 630608 10.51013333
0.999999 1.00E-06 1088196.508 0 1.00E-06 6009.703518 1195947 19.93245
0.9999991 9.00E-07 1203908.025 0 9.00E-07 6628.276382 1319028 21.9838
0.9999992 8.00E-07 1348428.719 0 8.00E-07 7429.336683 1478438 24.64063333
0.9999993 7.00E-07 1534027.111 0 7.00E-07 8488.236181 1689160 28.15266667
0.9999994 6.00E-07 1780354.844 0 6.00E-07 10088.17588 2007549 33.45915
0.9999995 5.00E-07 2125035.533 0 5.00E-07 11910.59799 2370210 39.5035
0.9999996 4.00E-07 2637184.055 0 4.00E-07 14739.1809 2933128 48.88546667
0.9999997 3.00E-07 3488346.553 0 3.00E-07 19689.76382 3918288 65.3048
0.9999998 2.00E-07 5184203.387 0 2.00E-07 29417.75377 5854135 97.56891667
0.9999999 1.00E-07 1.02E+07 0 1.00E-07 54512.9598 10848096 180.8016
607.63275
dr-3-10-3-10-3
f2[0] f2[1] f2[2] 迭代次数n 平均准确率p-ave δ 耗时ms/次 耗时ms/199次 耗时 min/199
0.526440336 0.472256796 0.472675861 1.869346734 0 0.5 0.472361809 109 0.001816667
0.620190597 0.378660228 0.381783874 5.331658291 0 0.4 0.155778894 31 0.000516667
0.713801296 0.285566484 0.287647306 10.22613065 0 0.3 0.236180905 63 0.00105
0.806969107 0.192119984 0.194035873 18.30653266 0 0.2 0.236180905 47 0.000783333
0.902155298 0.097590075 0.097948187 38.37688442 0 0.1 0.472361809 94 0.001566667
0.99004019 0.009950875 0.009949246 268.6934673 0 0.01 2.834170854 564 0.0094
0.99900074 9.99E-04 9.99E-04 1680.497487 0 0.001 13.06030151 2600 0.043333333
0.999900025 1.00E-04 1.00E-04 12004.45729 0 1.00E-04 78.81909548 15700 0.261666667
0.999910028 9.00E-05 9.00E-05 13189.36181 0 9.00E-05 77.22613065 15383 0.256383333
0.999920025 8.00E-05 8.00E-05 14663.1608 0 8.00E-05 85.75376884 17067 0.28445
0.999930019 7.00E-05 7.00E-05 16544.53266 0 7.00E-05 97.30150754 19378 0.322966667
0.999940016 6.00E-05 6.00E-05 19034.80402 0 6.00E-05 113.3366834 22554 0.3759
0.999950014 5.00E-05 5.00E-05 22492.8392 0 5.00E-05 133.7688442 26620 0.443666667
0.999960011 4.00E-05 4.00E-05 27629.55779 0 4.00E-05 163.120603 32476 0.541266667
0.999970009 3.00E-05 3.00E-05 36073.57286 0 3.00E-05 211.8140704 42151 0.702516667
0.999980007 2.00E-05 2.00E-05 52783.36181 0 2.00E-05 309.5376884 61614 1.0269
0.999990003 1.00E-05 1.00E-05 102095.9497 0 1.00E-05 599.5125628 119303 1.988383333
0.999991002 9.00E-06 9.00E-06 112952.5578 0 9.00E-06 670.1407035 133358 2.222633333
0.999992002 8.00E-06 8.00E-06 126633.8995 0 8.00E-06 757.7085427 150784 2.513066667
0.999993002 7.00E-06 7.00E-06 143969.5829 0 7.00E-06 875.2311558 174172 2.902866667
0.999994002 6.00E-06 6.00E-06 167092.598 0 6.00E-06 1003.854271 199767 3.32945
0.999995002 5.00E-06 5.00E-06 199373.392 0 5.00E-06 1183.085427 235434 3.9239
0.999996001 4.00E-06 4.00E-06 247769.0754 0 4.00E-06 1512.356784 300976 5.016266667
0.999997001 3.00E-06 3.00E-06 328359.2915 0 3.00E-06 1945.427136 387140 6.452333333
0.999998001 2.00E-06 2.00E-06 488816 0 2.00E-06 2507.829146 499074 8.3179
0.999999 1.00E-06 1.00E-06 969244.1558 0 1.00E-06 5722.160804 1138710 18.9785
0.9999991 9.00E-07 9.00E-07 1075569.915 0 9.00E-07 6469.055276 1287342 21.4557
0.9999992 8.00E-07 8.00E-07 1209469.04 0 8.00E-07 7172.030151 1427234 23.78723333
0.9999993 7.00E-07 7.00E-07 1380826.05 0 7.00E-07 8186.537688 1629128 27.15213333
0.9999994 6.00E-07 6.00E-07 1610095.312 0 6.00E-07 9600.678392 1910545 31.84241667
0.9999995 5.00E-07 5.00E-07 1929071.94 0 5.00E-07 11807.44221 2349681 39.16135
0.9999996 4.00E-07 4.00E-07 2409909.352 0 4.00E-07 14563.61809 2898167 48.30278333
0.9999997 3.00E-07 3.00E-07 3209632.161 0 3.00E-07 20176.22111 4015080 66.918
0.9999998 2.00E-07 2.00E-07 4811423.382 0 2.00E-07 28304.31156 5632558 93.87596667
0.9999999 1.00E-07 1.00E-07 9627046.156 0 1.00E-07 56264.20603 11196577 186.6096167
599.0246833
dr-4-10-4-10-4
f2[0] f2[1] f2[2] f2[3] 迭代次数n 平均准确率p-ave δ 耗时ms/次 耗时ms/199次 耗时 min/199
0.526261475 0.470138296 0.473433824 0.470196578 3 0 0.5 0.72361809 144 0.0024
0.619481649 0.377210594 0.378727222 0.378469657 7 0 0.4 0.155778894 47 0.000783333
0.713542792 0.285969096 0.285711052 0.286628343 12 0 0.3 0.316582915 63 0.00105
0.808050416 0.191568156 0.192380965 0.19206912 20 0 0.2 0.391959799 78 0.0013
0.902437476 0.097327741 0.097530188 0.097340394 38 0 0.1 0.467336683 109 0.001816667
0.990051834 0.00994703 0.009956631 0.009950273 235 0 0.01 2.462311558 507 0.00845
0.999001067 9.99E-04 9.99E-04 9.99E-04 1398 0 0.001 12.98492462 2584 0.043066667
0.999900049 1.00E-04 9.99E-05 9.99E-05 10590 0 1.00E-04 74.13065327 14752 0.245866667
0.999910044 9.00E-05 9.00E-05 9.00E-05 11673 0 9.00E-05 77.95979899 15529 0.258816667
0.999920041 8.00E-05 8.00E-05 8.00E-05 13043 0 8.00E-05 88.72361809 17657 0.294283333
0.999930029 7.00E-05 7.00E-05 7.00E-05 14783 0 7.00E-05 100.798995 20075 0.334583333
0.999940023 6.00E-05 6.00E-05 6.00E-05 17128 0 6.00E-05 115.5527638 22995 0.38325
0.999950023 5.00E-05 5.00E-05 5.00E-05 20378 0 5.00E-05 141.6733668 28193 0.469883333
0.999960015 4.00E-05 4.00E-05 4.00E-05 25185 0 4.00E-05 175.1155779 34849 0.580816667
0.999970011 3.00E-05 3.00E-05 3.00E-05 33209 0 3.00E-05 230.638191 45897 0.76495
0.999980007 2.00E-05 2.00E-05 2.00E-05 49229 0 2.00E-05 339.8190955 67631 1.127183333
0.999990004 1.00E-05 9.99E-06 1.00E-05 97192 0 1.00E-05 671.6934673 133680 2.228
0.999991003 9.00E-06 9.00E-06 9.00E-06 107913 0 9.00E-06 740.879397 147437 2.457283333
0.999992003 8.00E-06 8.00E-06 8.00E-06 121242 0 8.00E-06 837.6030151 166685 2.778083333
0.999993002 7.00E-06 7.00E-06 7.00E-06 138604 0 7.00E-06 956.9949749 190442 3.174033333
0.999994002 6.00E-06 6.00E-06 6.00E-06 161638 0 6.00E-06 1119.080402 222697 3.711616667
0.999995002 5.00E-06 5.00E-06 5.00E-06 193006 0 5.00E-06 1340.954774 266862 4.4477
0.999996001 4.00E-06 4.00E-06 4.00E-06 240321 0 4.00E-06 1673.728643 333072 5.5512
0.999997001 3.00E-06 3.00E-06 3.00E-06 320678 0 3.00E-06 2218.623116 441506 7.358433333
0.999998 2.00E-06 2.00E-06 2.00E-06 481138 0 2.00E-06 3369.929648 670625 11.17708333
0.999999 1.00E-06 1.00E-06 1.00E-06 962243 0 1.00E-06 6656.326633 1324615 22.07691667
0.9999991 9.00E-07 9.00E-07 9.00E-07 1068340 0 9.00E-07 7402.738693 1473150 24.5525
0.9999992 8.00E-07 8.00E-07 8.00E-07 1202423 0 8.00E-07 8283.81407 1648481 27.47468333
0.9999993 7.00E-07 7.00E-07 7.00E-07 1375220 0 7.00E-07 9110.095477 1812943 30.21571667
0.9999994 6.00E-07 6.00E-07 6.00E-07 1601415 0 6.00E-07 10525.52261 2094580 34.90966667
0.9999995 5.00E-07 5.00E-07 5.00E-07 1927719 0 5.00E-07 12147.62312 2417392 40.28986667
0.9999996 4.00E-07 4.00E-07 4.00E-07 2410357 0 4.00E-07 15609.35678 3106310 51.77183333
0.9999997 3.00E-07 3.00E-07 3.00E-07 3220585 0 3.00E-07 20894.52261 4158010 69.30016667
0.9999998 2.00E-07 2.00E-07 2.00E-07 4829216 0 2.00E-07 31439.65829 6256492 104.2748667
0.9999999 1.00E-07 1.00E-07 1.00E-07 9688361 0 1.00E-07 64211.86432 12778161 212.96935
665.2375
dr-2-10-2
f2[0] f2[1] 迭代次数n 平均准确率p-ave δ 耗时ms/次 耗时ms/199次 耗时 min/199
0.526584111 0.470703963 1.869346734 0 0.5 0.472361809 110 0.001833333
0.61933022 0.378788514 5.316582915 0 0.4 0.16080402 47 0.000783333
0.714022291 0.285632622 10.34673367 0 0.3 0.08040201 31 0.000516667
0.806512411 0.192506914 18.5678392 0 0.2 0.16080402 47 0.000783333
0.902097214 0.097758283 39.7839196 0 0.1 0.236180905 47 0.000783333
0.99003051 0.009968748 326.8140704 0 0.01 1.487437186 312 0.0052
0.999000471 1.00E-03 2555.768844 0 0.001 9.201005025 1831 0.030516667
0.999900011 1.00E-04 21902.38693 0 1.00E-04 62.85427136 12508 0.208466667
0.999910009 9.00E-05 23880.13568 0 9.00E-05 63.48743719 12634 0.210566667
0.999920007 8.00E-05 27373.11558 0 8.00E-05 73.70854271 14669 0.244483333
0.999930008 7.00E-05 30471.34171 0 7.00E-05 82.66834171 16466 0.274433333
0.999940006 6.00E-05 33747.86935 0 6.00E-05 89.8241206 17875 0.297916667
0.999950004 5.00E-05 41400.74372 0 5.00E-05 111.1809045 22141 0.369016667
0.999960004 4.00E-05 50904.86935 0 4.00E-05 139.040201 27672 0.4612
0.999970002 3.00E-05 68669.09045 0 3.00E-05 184.2763819 36671 0.611183333
0.999980001 2.00E-05 98491.42211 0 2.00E-05 266.6532663 53096 0.884933333
0.999990001 1.00E-05 193272.4774 0 1.00E-05 524.718593 104451 1.74085
0.999991001 9.00E-06 206907.4774 0 9.00E-06 558.1105528 111064 1.851066667
0.999992001 8.00E-06 237203.201 0 8.00E-06 642.5778894 127873 2.131216667
0.999993 7.00E-06 269616.4372 0 7.00E-06 727.0201005 144692 2.411533333
0.999994 6.00E-06 308451.3015 0 6.00E-06 830.2512563 165220 2.753666667
0.999995 5.00E-06 366383.0905 0 5.00E-06 987.0050251 196414 3.273566667
0.999996 4.00E-06 441795.6482 0 4.00E-06 1193.38191 237499 3.958316667
0.999997 3.00E-06 587062.9196 0 3.00E-06 1594.281407 317262 5.2877
0.999998 2.00E-06 881343.3819 0 2.00E-06 2384.386935 474493 7.908216667
0.999999 1.00E-06 1691667.427 0 1.00E-06 4240.211055 843802 14.06336667
0.9999991 9.00E-07 1861192.327 0 9.00E-07 5102.648241 1015444 16.92406667
0.9999992 8.00E-07 2080246.372 0 8.00E-07 5709.417085 1136174 18.93623333
0.9999993 7.00E-07 2464329.97 0 7.00E-07 6725.005025 1338292 22.30486667
0.9999994 6.00E-07 2925796.92 0 6.00E-07 7890.638191 1570237 26.17061667
0.9999995 5.00E-07 3289760.563 0 5.00E-07 8888.251256 1768762 29.47936667
0.9999996 4.00E-07 4007427.271 0 4.00E-07 10831.90955 2155550 35.92583333
0.9999997 3.00E-07 5245088.296 0 3.00E-07 14310.68342 2847826 47.46376667
0.9999998 2.00E-07 7786895.241 0 2.00E-07 21688.41709 4316003 71.93338333
0.9999999 1.00E-07 1.58E+07 0 1.00E-07 42070.00503 8371946 139.5324333
457.6526833
dr-3-10-3
f2[0] f2[1] f2[2] 迭代次数n 平均准确率p-ave δ 耗时ms/次 耗时ms/199次 耗时 min/199
0.531998108 0.4668063 0.467841829 2.040201005 0 0.5 0.391959799 78 0.0013
0.625916993 0.374693698 0.373937912 5.577889447 0 0.4 0.236180905 78 0.0013
0.717575379 0.283496485 0.282197138 10.4321608 0 0.3 0.155778894 31 0.000516667
0.809919228 0.190881722 0.190713318 18.48241206 0 0.2 0.16080402 47 0.000783333
0.902821459 0.097322419 0.09703025 38.00502513 0 0.1 0.236180905 47 0.000783333
0.990045238 0.009953845 0.009955177 281.0904523 0 0.01 1.567839196 312 0.0052
0.999000849 9.99E-04 9.99E-04 1994.175879 0 0.001 8.261306533 1644 0.0274
0.999900027 1.00E-04 1.00E-04 16359.0402 0 1.00E-04 55.13567839 11020 0.183666667
0.999910024 9.00E-05 9.00E-05 18649.9598 0 9.00E-05 56.92462312 11344 0.189066667
0.999920021 8.00E-05 8.00E-05 20427.95477 0 8.00E-05 60.57286432 12069 0.20115
0.999930016 7.00E-05 7.00E-05 23575.8593 0 7.00E-05 70.74874372 14079 0.23465
0.999940017 6.00E-05 6.00E-05 26453.01508 0 6.00E-05 79.9798995 15931 0.265516667
0.999950013 5.00E-05 5.00E-05 31641.95477 0 5.00E-05 96.27638191 19159 0.319316667
0.999960009 4.00E-05 4.00E-05 38461.94975 0 4.00E-05 116.080402 23100 0.385
0.999970008 3.00E-05 3.00E-05 51233.01508 0 3.00E-05 155.4924623 30943 0.515716667
0.999980005 2.00E-05 2.00E-05 74906.1206 0 2.00E-05 226.8291457 45139 0.752316667
0.999990003 1.00E-05 1.00E-05 144249.7286 0 1.00E-05 437.2713568 87032 1.450533333
0.999991002 9.00E-06 9.00E-06 158850.8543 0 9.00E-06 479.3115578 95383 1.589716667
0.999992002 8.00E-06 8.00E-06 180718.5427 0 8.00E-06 545.5276382 108560 1.809333333
0.999993002 7.00E-06 7.00E-06 202380.0402 0 7.00E-06 622.5527638 123894 2.0649
0.999994001 6.00E-06 6.00E-06 240200 0 6.00E-06 722.5929648 143808 2.3968
0.999995001 5.00E-06 5.00E-06 279138.8844 0 5.00E-06 839.4120603 167050 2.784166667
0.999996001 4.00E-06 4.00E-06 344849.6935 0 4.00E-06 1036.477387 206264 3.437733333
0.999997001 3.00E-06 3.00E-06 459529.0302 0 3.00E-06 1381.035176 274831 4.580516667
0.999998 2.00E-06 2.00E-06 672539.7437 0 2.00E-06 2023.020101 402583 6.709716667
0.999999 1.00E-06 1.00E-06 1292568.874 0 1.00E-06 3888.683417 773855 12.89758333
0.9999991 9.00E-07 9.00E-07 1469246.196 0 9.00E-07 4528.236181 901121 15.01868333
0.9999992 8.00E-07 8.00E-07 1621744.271 0 8.00E-07 5122.98995 1019482 16.99136667
0.9999993 7.00E-07 7.00E-07 1797949.739 0 7.00E-07 5819.79397 1158147 19.30245
0.9999994 6.00E-07 6.00E-07 2091886.859 0 6.00E-07 6800.984925 1353401 22.55668333
0.9999995 5.00E-07 5.00E-07 2467525.844 0 5.00E-07 8110.522613 1613995 26.89991667
0.9999996 4.00E-07 4.00E-07 3216941.045 0 4.00E-07 9953.045226 1980658 33.01096667
0.9999997 3.00E-07 3.00E-07 4254122.518 0 3.00E-07 12569.71859 2501374 41.68956667
0.9999998 2.00E-07 2.00E-07 5986582.417 0 2.00E-07 18259.92462 3633725 60.56208333
0.9999999 1.00E-07 1.00E-07 1.23E+07 0 1.00E-07 38868.19095 7734773 128.9128833
407.7492833
dr-4-10-4
f2[0] f2[1] f2[2] f2[3] 迭代次数n 平均准确率p-ave δ 耗时ms/次 耗时ms/199次 耗时 min/199
0.535716861 0.463529881 0.462201609 0.464102577 3 0 0.5 0.547738693 109 0.001816667
0.626382757 0.370585994 0.369941534 0.372025326 7 0 0.4 0.221105528 51 0.00085
0.718509103 0.281085664 0.281285396 0.281171568 12 0 0.3 0.135678392 27 0.00045
0.810595708 0.189874827 0.189742401 0.188944534 20 0 0.2 0.180904523 40 0.000666667
0.903273004 0.096510407 0.096590552 0.096482455 42 0 0.1 0.311557789 62 0.001033333
0.99006448 0.009931742 0.009934172 0.009929011 347 0 0.01 1.768844221 352 0.005866667
0.999001338 9.99E-04 9.99E-04 9.99E-04 2942 0 0.001 8.376884422 1668 0.0278
0.99990005 1.00E-04 9.99E-05 9.99E-05 23884 0 1.00E-04 51.49748744 10254 0.1709
0.999910042 9.00E-05 9.00E-05 9.00E-05 37315 0 9.00E-05 54.46231156 10858 0.180966667
0.999920041 8.00E-05 8.00E-05 8.00E-05 26333 0 8.00E-05 60.04020101 11964 0.1994
0.99993003 7.00E-05 7.00E-05 7.00E-05 46405 0 7.00E-05 67.23115578 13387 0.223116667
0.999940028 6.00E-05 6.00E-05 6.00E-05 43844 0 6.00E-05 80.77386935 16075 0.267916667
0.999950023 5.00E-05 5.00E-05 5.00E-05 57098 0 5.00E-05 94.61809045 18837 0.31395
0.999960017 4.00E-05 4.00E-05 4.00E-05 63706 0 4.00E-05 117.3819095 23359 0.389316667
0.999970013 3.00E-05 3.00E-05 3.00E-05 102785 0 3.00E-05 152.3819095 30332 0.505533333
0.999980009 2.00E-05 2.00E-05 2.00E-05 131495 0 2.00E-05 223.3517588 44456 0.740933333
0.999990004 1.00E-05 1.00E-05 1.00E-05 203355 0 1.00E-05 432.8542714 86146 1.435766667
0.999991003 9.00E-06 9.00E-06 9.00E-06 296829 0 9.00E-06 485.1005025 96535 1.608916667
0.999992003 8.00E-06 8.00E-06 8.00E-06 363607 0 8.00E-06 553.4522613 110137 1.835616667
0.999993002 7.00E-06 7.00E-06 7.00E-06 421455 0 7.00E-06 624.6884422 124313 2.071883333
0.999994002 6.00E-06 6.00E-06 6.00E-06 405253 0 6.00E-06 720.0854271 143305 2.388416667
0.999995002 5.00E-06 5.00E-06 5.00E-06 438198 0 5.00E-06 846.7085427 168511 2.808516667
0.999996001 4.00E-06 4.00E-06 4.00E-06 733902 0 4.00E-06 1062.241206 211386 3.5231
0.999997001 3.00E-06 3.00E-06 3.00E-06 747879 0 3.00E-06 1375.070352 273639 4.56065
0.999998001 2.00E-06 2.00E-06 2.00E-06 1245116 0 2.00E-06 2037.321608 405442 6.757366667
0.999999 1.00E-06 1.00E-06 1.00E-06 2046819 0 1.00E-06 3900.668342 776234 12.93723333
0.9999991 9.00E-07 9.00E-07 9.00E-07 2010564 0 9.00E-07 4260.743719 847889 14.13148333
0.9999992 8.00E-07 8.00E-07 8.00E-07 2166817 0 8.00E-07 4823.21608 959820 15.997
0.9999993 7.00E-07 7.00E-07 7.00E-07 3092601 0 7.00E-07 5536.517588 1101799 18.36331667
0.9999994 6.00E-07 6.00E-07 6.00E-07 2729326 0 6.00E-07 6414.592965 1276520 21.27533333
0.9999995 5.00E-07 5.00E-07 5.00E-07 3698517 0 5.00E-07 7769.160804 1546067 25.76778333
0.9999996 4.00E-07 4.00E-07 4.00E-07 5727957 0 4.00E-07 9313.638191 1853418 30.8903
0.9999997 3.00E-07 3.00E-07 3.00E-07 6026219 0 3.00E-07 12582.55276 2503943 41.73238333
0.9999998 2.00E-07 2.00E-07 2.00E-07 1.07E+07 0 2.00E-07 18166.89447 3615217 60.25361667
0.9999999 1.00E-07 1.00E-07 1.00E-07 2.71E+07 0 1.00E-07 36836.72864 7330514 122.1752333
393.5444333
本次实验原始数据比较多有感兴趣的朋友可以在我的资源里下载