输入对5层网络迭代次数的影响

制作一个5层网络和一个3层网络

图中左边的5层网络很显然可以看作是由两个右边的3层网络组合而成,所以左边的网络的迭代次数和右边的网络的迭代次数有什么关系?

《测量一组5层网络的迭代次数》测量了输入固定为0.1时5层网络和3层网络收敛迭代次数之间的关系。本文测量当输入是0-1之间的随机数时对迭代次数的影响。

将左边的5层网络写成

(r)-3*6*3*6*3-(3*k),k∈{0,1}

意思是向网络输入0到1的随机数r,输出是1,0,0。

右边的3层网络写成

(r)-3*6*3-(3*k),k∈{0,1}

其中r的初始化方法是

Random rand1 =new Random();

int ti1=rand1.nextInt(98)+1;

r=((double)ti1/100);

 

用这种办法制作了三组网络

(r)-2-10-2-10-2-(2*k),k∈{0,1}

(r)-2-10-2-(2*k),k∈{0,1}

 

(r)-3-10-3-10-3-(3*k),k∈{0,1}

(r)-3-10-3-(3*k),k∈{0,1}

 

(r)-4-10-4-10-4-(4*k),k∈{0,1}

(r)-4-10-4-(4*k),k∈{0,1}

用来比较

(r)-x-10-x-10-x-(x*k),k∈{0,1}

(r)-x-10-x-(x*k),k∈{0,1}

这两类网络迭代次数的关系。

具体的实验过程

网络的收敛标准是

if (Math.abs(f4[0]-y[0])< δ  &&  Math.abs(f4[1]-y[1])< δ  &&  Math.abs(f4[2]-y[2])< δ  )

因为对应每个收敛标准δ都有一个特征的迭代次数n与之对应因此可以用迭代次数曲线n(δ)来评价网络性能。

具体进样顺序

   

δ=0.5

迭代次数

 

r

1

判断是否达到收敛

梯度下降

   

r

2

判断是否达到收敛

梯度下降

   

……

   

每当网路达到收敛标准记录迭代次数

将这一过程重复199次

  

δ=0.4

   

……

   

δ=1e-7

   

本文尝试了δ从1e-7到0.5的共35个值,当网络满足条件收敛是记录迭代次数

首先观察5层网络迭代次数的变化

 

r-2-10-2-10-2

r-3-10-3-10-3

r-4-10-4-10-4

   

0.1-2-10-2-10-2

0.1-3-10-3-10-3

0.1-4-10-4-10-4

     

δ

迭代次数n

迭代次数n

迭代次数n

r2/r2

r3/r2

r4/r2

δ

迭代次数n

迭代次数n

迭代次数n

0.1-2/0.1-2

0.1-3/0.12

0.1-4/0.1-2

r-2/0.1-2

r-3/0.1-3

r-4/0.1-4

0.5

1.904522613

1.869346734

3

1

0.981530343

1.575197889

0.5

1.934673367

1.959798995

3

1

1.012987013

1.550649351

0.984415584

0.953846154

1

0.4

5.341708543

5.331658291

7

1

0.998118532

1.310442145

0.4

5.371859296

5.341708543

7

1

0.994387278

1.303086997

0.994387278

0.998118532

1

0.3

10.34673367

10.22613065

12

1

0.988343856

1.159786304

0.3

10.27135678

10.18090452

11

1

0.991193738

1.070939335

1.007338552

1.004442251

1.090909091

0.2

18.70854271

18.30653266

20

1

0.978511953

1.069030352

0.2

18.66331658

18.52763819

20

1

0.99273021

1.071620894

1.002423263

0.988066178

1

0.1

40.25125628

38.37688442

38

1

0.953433208

0.944069913

0.1

40.10050251

38.36683417

39

1

0.956766917

0.972556391

1.003759399

1.000261952

0.974358974

0.01

325.8040201

268.6934673

235

1

0.824708876

0.721292512

0.01

325.6130653

268.5025126

237

1

0.824606078

0.727857771

1.000586447

1.000711184

0.991561181

0.001

2279.577889

1680.497487

1398

1

0.737196783

0.613271434

0.001

2280.115578

1684.38191

1406

1

0.738726548

0.616635408

0.999764183

0.997693859

0.9943101

1.00E-04

15912.24623

12004.45729

10590

1

0.75441626

0.665525146

1.00E-04

15835.47739

12056.8191

10609

1

0.76138021

0.669951384

1.004847902

0.995657079

0.998209068

9.00E-05

17423.96482

13189.36181

11673

1

0.756966738

0.669939369

9.00E-05

17342.0603

13253.43719

11717

1

0.764236599

0.675640598

1.004722883

0.995165376

0.996244773

8.00E-05

19282.14573

14663.1608

13043

1

0.760452753

0.676428868

8.00E-05

19208.1206

14739.47739

13077

1

0.767356562

0.680805805

1.003853846

0.9948223

0.997400015

7.00E-05

21687.30653

16544.53266

14783

1

0.762867101

0.681642968

7.00E-05

21562.95477

16633.47236

14844

1

0.771391145

0.688402872

1.005766917

0.994652969

0.995890596

6.00E-05

24788.30151

19034.80402

17128

1

0.767894646

0.690971102

6.00E-05

24676.82412

19138.08543

17197

1

0.775548966

0.696888705

1.004517493

0.994603357

0.995987672

5.00E-05

29117.86935

22492.8392

20378

1

0.772475449

0.699845162

5.00E-05

28974.85427

22613.09045

20480

1

0.780438453

0.706819776

1.004935834

0.994682228

0.995019531

4.00E-05

35437.03015

27629.55779

25185

1

0.779680399

0.710697254

4.00E-05

35289.97487

27783.49749

25306

1

0.787291507

0.717087504

1.004167055

0.994459312

0.995218525

3.00E-05

45809.18593

36073.57286

33209

1

0.787474654

0.724941937

3.00E-05

45565.71357

36295.21106

33318

1

0.796546531

0.731207686

1.005343324

0.993893459

0.996728495

2.00E-05

65988.56784

52783.36181

49229

1

0.799886458

0.746023161

2.00E-05

65556.1005

53122.43719

49468

1

0.810335526

0.754590337

1.006596905

0.993617097

0.995168594

1.00E-05

124218.0452

102095.9497

97192

1

0.821909164

0.782430603

1.00E-05

123256.9196

102725.196

97258

1

0.833423359

0.789067261

1.007797742

0.99387447

0.999321393

9.00E-06

136835.3719

112952.5578

107913

1

0.825463155

0.788633805

9.00E-06

135849.9447

113718.9146

108216

1

0.837092093

0.796584792

1.007253792

0.993260956

0.997200044

8.00E-06

152610.0352

126633.8995

121242

1

0.829787499

0.794456274

8.00E-06

151453.6382

127307.3518

121518

1

0.840569783

0.802344542

1.00763532

0.994710028

0.997728732

7.00E-06

172631.2513

143969.5829

138604

1

0.833971728

0.802890548

7.00E-06

171409.3065

144868.4121

139247

1

0.845160715

0.812365459

1.007128812

0.993795547

0.995382306

6.00E-06

199241.1256

167092.598

161638

1

0.838645122

0.811268254

6.00E-06

197814.8894

168071.0653

161784

1

0.849638093

0.817855524

1.007209954

0.994178253

0.999097562

5.00E-06

236247.5427

199373.392

193006

1

0.843917315

0.816965111

5.00E-06

234464.0503

200668.6884

193666

1

0.855861221

0.825994432

1.007606677

0.9935451

0.996592071

4.00E-06

291092.995

247769.0754

240321

1

0.851168113

0.825581529

4.00E-06

288965.3467

249317.9447

241691

1

0.862795306

0.836401329

1.007362988

0.993787574

0.994331605

3.00E-06

381793.9749

328359.2915

320678

1

0.860043147

0.839924203

3.00E-06

378816.8543

330180.2663

322513

1

0.871609229

0.851369194

1.007858997

0.994484907

0.994310307

2.00E-06

560602.8794

488816

481138

1

0.871947002

0.858251032

2.00E-06

556550.6985

491437.4623

482398

1

0.883005742

0.866763803

1.007280884

0.994665726

0.997388049

1.00E-06

1088196.508

969244.1558

962243

1

0.890688537

0.884254813

1.00E-06

1080983.186

974155.5427

964074

1

0.901175481

0.89184921

1.006672927

0.994958313

0.998100768

9.00E-07

1203908.025

1075569.915

1068340

1

0.893398742

0.88739337

9.00E-07

1208133.623

1080634.106

1072751

1

0.894465716

0.887940688

0.996502375

0.995313686

0.995888142

8.00E-07

1348428.719

1209469.04

1202423

1

0.89694696

0.891721589

8.00E-07

1353904.367

1215191.643

1206559

1

0.897546143

0.891170033

0.995955661

0.995290781

0.99657207

7.00E-07

1534027.111

1380826.05

1375220

1

0.900131451

0.896476985

7.00E-07

1539773.07

1387027.477

1381749

1

0.900799932

0.897371845

0.996268308

0.99552898

0.995274829

6.00E-07

1780354.844

1610095.312

1601415

1

0.904367642

0.899492034

6.00E-07

1786506.508

1616167.709

1606431

1

0.904652573

0.899202434

0.996556596

0.996242719

0.99687755

5.00E-07

2125035.533

1929071.94

1927719

1

0.907783381

0.907146714

5.00E-07

2133555.362

1937818.854

1931582

1

0.90825806

0.905334839

0.996006746

0.995486207

0.998000085

4.00E-07

2637184.055

2409909.352

2410357

1

0.913819173

0.913988918

4.00E-07

2646545.613

2418741.794

2414921

1

0.913924091

0.9124804

0.996462726

0.996348332

0.998110083

3.00E-07

3488346.553

3209632.161

3220585

1

0.920101289

0.923241126

3.00E-07

3500985.513

3222108.256

3226161

1

0.920343213

0.921500814

0.996389885

0.996127971

0.99827163

2.00E-07

5184203.387

4811423.382

4829216

1

0.928093098

0.931525181

2.00E-07

5199169.422

4828569.704

4839273

1

0.928719438

0.930778093

0.997121457

0.996448985

0.997921795

1.00E-07

1.02E+07

9627046.156

9688361

1

0.943828055

0.949839314

1.00E-07

1.03E+07

9653872.432

9700878

1

0.937269168

0.941832816

0.990291262

0.99722119

0.998709704

 

很明显当δ<0.1时

r-2-10-2-10-2  >  r-3-10-3-10-3  >  r-4-10-4-10-4

也就是输入层节点数越少迭代次数越多。

与当输入固定为0.1的数据比较

δ<0.01时

这组数据同样满足输入层节点数越少迭代次数越多的规律。

再比较随机输入与固定输入迭代次数之间的比例关系(r)-x-10-x-10-x-(x*k),k∈{0,1}     /   0.1-x-10-x-10-x-(x*k),k∈{0,1}

从图中明显的观察到随机输入网络(r)-x-10-x-10-x-(x*k),k∈{0,1}的迭代次数是要稍小于固定输入网络0.1-x-10-x-10-x-(x*k),k∈{0,1}的迭代次数。随机输入网络的迭代次数大概要比固定输入0.1的网络的迭代次数要少0.5%。

          

然后再比较3层网络的数据

 

r-2-10-2

r-3-10-3

r-4-10-4

 

 

 

 

0.1-2-10-2

0.1-3-10-3

0.1-4-10-4

 

 

 

 

 

 

δ

迭代次数n

迭代次数n

迭代次数n

r2/r2

r3/r2

r4/r2

δ

迭代次数n

迭代次数n

迭代次数n

0.1-2/0.1-2

0.1-3/0.12

0.1-4/0.1-2

r-2/0.1-2

r-3/0.1-3

r-4/0.1-4

0.5

1.869346734

2.040201005

3

1

1.091397849

1.604838709

0.5

1.834170854

2.150753769

4

1

1.17260274

2.180821918

1.019178083

0.948598131

0.75

0.4

5.316582915

5.577889447

7

1

1.049149338

1.316635161

0.4

5.467336683

5.668341709

7

1

1.036764706

1.280330882

0.972426471

0.984042553

1

0.3

10.34673367

10.4321608

12

1

1.008256435

1.159786304

0.3

10.3718593

10.52763819

12

1

1.015019379

1.156976744

0.997577519

0.990930787

1

0.2

18.5678392

18.48241206

20

1

0.995399188

1.077131258

0.2

18.98492462

19.09547739

21

1

1.005823187

1.106140815

0.978030704

0.967894737

0.952380952

0.1

39.7839196

38.00502513

42

1

0.955286093

1.055702918

0.1

41.81407035

41.92964824

43

1

1.002764091

1.028361976

0.951448143

0.906399808

0.976744186

0.01

326.8140704

281.0904523

347

1

0.860092872

1.061765791

0.01

405.9145729

400.9246231

397

1

0.987706897

0.978038303

0.805130173

0.701105485

0.874055416

0.001

2555.768844

1994.175879

2942

1

0.78026457

1.151121318

0.001

3909.160804

3785.150754

3660

1

0.968277066

0.936262329

0.653789642

0.526841864

0.803825137

1.00E-04

21902.38693

16359.0402

23884

1

0.74690673

1.090474754

1.00E-04

38025.66332

35887.74372

33662

1

0.943776928

0.885244255

0.575989609

0.455839195

0.709524092

9.00E-05

23880.13568

18649.9598

37315

1

0.780982154

1.562595812

9.00E-05

42192.34171

39777.31156

37338

1

0.94276141

0.884947327

0.565982705

0.468859233

0.999384006

8.00E-05

27373.11558

20427.95477

26333

1

0.74627803

0.962002295

8.00E-05

47395.70352

44621.80905

41802

1

0.941473715

0.881978679

0.57754424

0.45780203

0.629945936

7.00E-05

30471.34171

23575.8593

46405

1

0.77370598

1.522906357

7.00E-05

54052.65327

50836.96482

47443

1

0.940508222

0.877718246

0.563734431

0.463754266

0.978121114

6.00E-05

33747.86935

26453.01508

43844

1

0.783842524

1.299163498

6.00E-05

62950.38191

59079.18593

55259

1

0.938504011

0.877818344

0.536102694

0.44775524

0.793427315

5.00E-05

41400.74372

31641.95477

57098

1

0.764284695

1.379153968

5.00E-05

75340.25628

70575.01005

65584

1

0.936750332

0.870504074

0.549516895

0.448345027

0.870608685

4.00E-05

50904.86935

38461.94975

63706

1

0.755565238

1.251471634

4.00E-05

93917.48744

87725.11558

81242

1

0.934065827

0.865035918

0.542016942

0.438437151

0.784151055

3.00E-05

68669.09045

51233.01508

102785

1

0.746085535

1.496816098

3.00E-05

124764.8342

116155.4975

107253

1

0.930995486

0.859641266

0.550388183

0.441072667

0.958341492

2.00E-05

98491.42211

74906.1206

131495

1

0.760534461

1.335090886

2.00E-05

186176.5779

172366.9598

158480

1

0.925825159

0.851234896

0.529021552

0.434573544

0.829726148

1.00E-05

193272.4774

144249.7286

203355

1

0.746354217

1.0521674

1.00E-05

368710.8643

338333.7889

308464

1

0.917612747

0.836601331

0.524184384

0.426353304

0.65925035

9.00E-06

206907.4774

158850.8543

296829

1

0.767738587

1.434597743

9.00E-06

408984.0804

375023.1005

341247

1

0.916962587

0.83437722

0.505905944

0.423576185

0.869836218

8.00E-06

237203.201

180718.5427

363607

1

0.761872276

1.532892467

8.00E-06

459388.5276

420561.8643

382394

1

0.915481861

0.832397801

0.516345504

0.429707394

0.950870045

7.00E-06

269616.4372

202380.0402

421455

1

0.75062204

1.563165081

7.00E-06

524038.9497

478899.1457

435268

1

0.913861739

0.830602382

0.514496942

0.422594281

0.968265528

6.00E-06

308451.3015

240200

405253

1

0.778729086

1.313831383

6.00E-06

609813.0704

556314.598

504206

1

0.912270702

0.826820586

0.505812874

0.431770083

0.803744898

5.00E-06

366383.0905

279138.8844

438198

1

0.761877094

1.196010437

5.00E-06

729919.3065

664199.0553

600920

1

0.909962306

0.823269086

0.50195013

0.420263899

0.729211875

4.00E-06

441795.6482

344849.6935

733902

1

0.780563808

1.661179785

4.00E-06

909130.6181

825530.8241

744853

1

0.908044243

0.819302513

0.485953987

0.417730851

0.98529777

3.00E-06

587062.9196

459529.0302

747879

1

0.78275942

1.273933296

3.00E-06

1207124.558

1091742.894

980381

1

0.904416107

0.812162252

0.486331684

0.420913232

0.762845261

2.00E-06

881343.3819

672539.7437

1245116

1

0.763084806

1.412747886

2.00E-06

1799195.739

1619069.065

1449669

1

0.899884893

0.805731677

0.489854085

0.415386692

0.858896755

1.00E-06

1691667.427

1292568.874

2046819

1

0.764079779

1.209941722

1.00E-06

3559300.412

3175825.116

2818734

1

0.892261048

0.791934839

0.475280879

0.407002535

0.726148335

9.00E-07

1861192.327

1469246.196

2010564

1

0.789411269

1.080255904

9.00E-07

3947484.774

3517441.141

3123123

1

0.891058824

0.791167839

0.471488159

0.417703136

0.643767152

8.00E-07

2080246.372

1621744.271

2166817

1

0.779592404

1.041615565

8.00E-07

4433661.618

3943425.156

3493458

1

0.889428535

0.787939699

0.469193762

0.411252707

0.620249907

7.00E-07

2464329.97

1797949.739

3092601

1

0.72958969

1.254945984

7.00E-07

5056311.834

4490016.492

3972648

1

0.888002291

0.785680973

0.487376976

0.40043277

0.778473451

6.00E-07

2925796.92

2091886.859

2729326

1

0.714980197

0.93284875

6.00E-07

5882920.477

5216202.241

4605197

1

0.886668834

0.782807964

0.497337493

0.401036379

0.59266216

5.00E-07

3289760.563

2467525.844

3698517

1

0.750062443

1.124251121

5.00E-07

7040336.97

6225307.176

5492530

1

0.884234264

0.780151578

0.467273168

0.396370135

0.673372198

4.00E-07

4007427.271

3216941.045

5727957

1

0.802744711

1.429335235

4.00E-07

8766715.804

7731842.281

6800941

1

0.881954252

0.775768389

0.457118419

0.416063976

0.842230068

3.00E-07

5245088.296

4254122.518

6026219

1

0.811067856

1.14892613

3.00E-07

1.16E+07

1.02E+07

8973350

1

0.879310345

0.773564655

0.452162784

0.417070835

0.671568478

2.00E-07

7786895.241

5986582.417

1.07E+07

1

0.768802229

1.374103499

2.00E-07

1.73E+07

1.52E+07

1.32E+07

1

0.878612717

0.76300578

0.450109552

0.393854106

0.810606061

1.00E-07

1.58E+07

1.23E+07

2.71E+07

1

0.778481013

1.715189873

1.00E-07

3.42E+07

2.97E+07

2.58E+07

1

0.868421053

0.754385965

0.461988304

0.414141414

1.050387597

 

3层随机输入数据比较

r-2-10-2>r-3-10-3但r-4-10-4的数据变的不规则

3层固定输入的数据

这个明显的0.1-2-10-2>0.1-3-10-3>0.1-4-10-4,输入节点数越少迭代次数越多。

比较随机输入和固定输入的比值

若不考虑r-4和0.1-4的值

r-2/0.1-2  > r-3/0.1-3 的值但都接近0.5.

再比较3层网络和5层网络的迭代次数的比值

 

r-2-10-2

r-3-10-3

r-4-10-4

 

0.1-2-10-2

0.1-3-10-3

0.1-4-10-4

δ

r-2-10-2-10-2

r-3-10-3-10-3

r-4-10-4-10-4

δ

0.1-2-10-2-10-2

0.1-3-10-3-10-3

0.1-4-10-4-10-4

0.5

0.981530343

1.091397849

1

0.5

0.948051948

1.097435898

1.333333333

0.4

0.995296331

1.046182846

1

0.4

1.01777362

1.061147695

1

0.3

1

1.02014742

1

0.3

1.009784737

1.034057256

1.090909091

0.2

0.992479184

1.009607467

1

0.2

1.017232095

1.030648224

1.05

0.1

0.988389513

0.990310331

1.105263158

0.1

1.04273183

1.092861821

1.102564103

0.01

1.003100178

1.046138022

1.476595745

0.01

1.246616356

1.493187603

1.675105485

0.001

1.121158815

1.186658055

2.104434907

0.001

1.714457303

2.247204587

2.603129445

1.00E-04

1.376448467

1.36274717

2.255335222

1.00E-04

2.401295672

2.976551562

3.172966349

9.00E-05

1.37053397

1.414015331

3.196693224

9.00E-05

2.432948622

3.001282685

3.186651873

8.00E-05

1.419609413

1.393148111

2.018937361

8.00E-05

2.467482608

3.027367109

3.196604726

7.00E-05

1.405031172

1.424993971

3.139078671

7.00E-05

2.506736848

3.056305005

3.196106171

6.00E-05

1.361443394

1.389718279

2.559785147

6.00E-05

2.55099204

3.086995622

3.213293016

5.00E-05

1.421832869

1.406756812

2.801943272

5.00E-05

2.600194485

3.12098031

3.20234375

4.00E-05

1.436488022

1.392058101

2.529521541

4.00E-05

2.661307858

3.157454011

3.210384889

3.00E-05

1.499024465

1.420236783

3.095094703

3.00E-05

2.738129713

3.200298169

3.219070773

2.00E-05

1.492552806

1.419123717

2.67108818

2.00E-05

2.839958089

3.244711066

3.203687232

1.00E-05

1.555913049

1.412883949

2.092301836

1.00E-05

2.991400933

3.293581342

3.171605421

9.00E-06

1.512090584

1.406350218

2.750632454

9.00E-06

3.010557577

3.297807597

3.153387669

8.00E-06

1.554309326

1.42709451

2.999018492

8.00E-06

3.033195723

3.303515927

3.146809526

7.00E-06

1.561805497

1.405713875

3.040713111

7.00E-06

3.057237442

3.305752709

3.125869857

6.00E-06

1.548130691

1.437526275

2.507164157

6.00E-06

3.082746057

3.309996263

3.1165381

5.00E-06

1.550844027

1.400080932

2.270385377

5.00E-06

3.113139543

3.309928722

3.102867824

4.00E-06

1.517713088

1.391818947

3.053840488

4.00E-06

3.146157934

3.311156865

3.081840035

3.00E-06

1.537643227

1.39947016

2.332180567

3.00E-06

3.186565076

3.306505583

3.03981855

2.00E-06

1.572134954

1.375854603

2.587856291

2.00E-06

3.232761622

3.294557679

3.005130618

1.00E-06

1.55456061

1.333584388

2.127133167

1.00E-06

3.29265104

3.260080117

2.923773486

9.00E-07

1.545958901

1.366016449

1.881951439

9.00E-07

3.267423983

3.254978833

2.911321453

8.00E-07

1.542718827

1.34087291

1.80204221

8.00E-07

3.274722887

3.245105559

2.895389285

7.00E-07

1.606444862

1.30208272

2.248804555

7.00E-07

3.283803265

3.237150357

2.875086575

6.00E-07

1.643378526

1.299231694

1.704321491

6.00E-07

3.292974557

3.227512969

2.866725679

5.00E-07

1.548096732

1.279125881

1.918597576

5.00E-07

3.299814523

3.212533082

2.843539648

4.00E-07

1.519585735

1.334880518

2.376393621

4.00E-07

3.312512643

3.196638145

2.816216762

3.00E-07

1.503602987

1.325423695

1.871156638

3.00E-07

3.313352757

3.165629206

2.781432793

2.00E-07

1.502042775

1.244243531

2.215680558

2.00E-07

3.32745456

3.147930118

2.727682443

1.00E-07

1.549019608

1.277650465

2.79717075

1.00E-07

3.32038835

3.07648565

2.659553084

 

随机输入3层网络的迭代次数是对应5层网络的迭代次数的大约1.5倍左右

固定输入3层网络的迭代次数是对应5层网络的迭代次数的3倍左右。

这组实验表明3层网络随机输入的迭代次数比固定输入的迭代次数要小的多,甚至小于后者的50%。

而5层网络的随机输入的迭代次数只比固定输入的迭代次数略小,二者相差甚至小于1%,也就是5层网络对输入数据并不敏感。

 

实验数据

学习率 0.1

权重初始化方式

Random rand1 =new Random();

int ti1=rand1.nextInt(98)+1;

int xx=1;

if(ti1%2==0)

{ xx=-1;}

tw[a][b]=xx*((double)ti1/1000);

 

 


dr-2-10-2-10-2                              
                                    
f2[0]    f2[1]    迭代次数n    平均准确率p-ave    δ    耗时ms/次    耗时ms/199次    耗时 min/199
0.527608315    0.472339838    1.904522613    0    0.5    0.412060302    82    0.001366667
0.619745309    0.379034134    5.341708543    0    0.4    0.391959799    78    0.0013
0.712427458    0.285357852    10.34673367    0    0.3    0.155778894    31    0.000516667
0.806808233    0.19310006    18.70854271    0    0.2    0.236180905    47    0.000783333
0.902011379    0.097776184    40.25125628    0    0.1    0.688442211    142    0.002366667
0.990027433    0.009968527    325.8040201    0    0.01    3.015075377    600    0.01
0.999000529    1.00E-03    2279.577889    0    0.001    15.2361809    3047    0.050783333
0.999900012    1.00E-04    15912.24623    0    1.00E-04    91.9798995    18304    0.305066667
0.999910011    9.00E-05    17423.96482    0    9.00E-05    98.45728643    19609    0.326816667
0.999920009    8.00E-05    19282.14573    0    8.00E-05    109.1306533    21733    0.362216667
0.999930008    7.00E-05    21687.30653    0    7.00E-05    122.4623116    24370    0.406166667
0.999940006    6.00E-05    24788.30151    0    6.00E-05    140.6532663    27990    0.4665
0.999950004    5.00E-05    29117.86935    0    5.00E-05    164.2462312    32700    0.545
0.999960004    4.00E-05    35437.03015    0    4.00E-05    199.3969849    39696    0.6616
0.999970003    3.00E-05    45809.18593    0    3.00E-05    259.8492462    51720    0.862
0.999980002    2.00E-05    65988.56784    0    2.00E-05    375.7236181    74778    1.2463
0.999990001    1.00E-05    124218.0452    0    1.00E-05    703.4974874    140005    2.333416667
0.999991001    9.00E-06    136835.3719    0    9.00E-06    761.959799    151639    2.527316667
0.999992001    8.00E-06    152610.0352    0    8.00E-06    861.0150754    171358    2.855966667
0.999993001    7.00E-06    172631.2513    0    7.00E-06    972.6281407    193560    3.226
0.999994001    6.00E-06    199241.1256    0    6.00E-06    1125.437186    223962    3.7327
0.999995001    5.00E-06    236247.5427    0    5.00E-06    1336.170854    265906    4.431766667
0.999996001    4.00E-06    291092.995    0    4.00E-06    1650.854271    328528    5.475466667
0.999997    3.00E-06    381793.9749    0    3.00E-06    2128.020101    423493    7.058216667
0.999998    2.00E-06    560602.8794    0    2.00E-06    3168.80402    630608    10.51013333
0.999999    1.00E-06    1088196.508    0    1.00E-06    6009.703518    1195947    19.93245
0.9999991    9.00E-07    1203908.025    0    9.00E-07    6628.276382    1319028    21.9838
0.9999992    8.00E-07    1348428.719    0    8.00E-07    7429.336683    1478438    24.64063333
0.9999993    7.00E-07    1534027.111    0    7.00E-07    8488.236181    1689160    28.15266667
0.9999994    6.00E-07    1780354.844    0    6.00E-07    10088.17588    2007549    33.45915
0.9999995    5.00E-07    2125035.533    0    5.00E-07    11910.59799    2370210    39.5035
0.9999996    4.00E-07    2637184.055    0    4.00E-07    14739.1809    2933128    48.88546667
0.9999997    3.00E-07    3488346.553    0    3.00E-07    19689.76382    3918288    65.3048
0.9999998    2.00E-07    5184203.387    0    2.00E-07    29417.75377    5854135    97.56891667
0.9999999    1.00E-07    1.02E+07    0    1.00E-07    54512.9598    10848096    180.8016
                                    
                                   607.63275

dr-3-10-3-10-3                            
                                
f2[0]    f2[1]    f2[2]    迭代次数n    平均准确率p-ave    δ    耗时ms/次    耗时ms/199次    耗时 min/199
0.526440336    0.472256796    0.472675861    1.869346734    0    0.5    0.472361809    109    0.001816667
0.620190597    0.378660228    0.381783874    5.331658291    0    0.4    0.155778894    31    0.000516667
0.713801296    0.285566484    0.287647306    10.22613065    0    0.3    0.236180905    63    0.00105
0.806969107    0.192119984    0.194035873    18.30653266    0    0.2    0.236180905    47    0.000783333
0.902155298    0.097590075    0.097948187    38.37688442    0    0.1    0.472361809    94    0.001566667
0.99004019    0.009950875    0.009949246    268.6934673    0    0.01    2.834170854    564    0.0094
0.99900074    9.99E-04    9.99E-04    1680.497487    0    0.001    13.06030151    2600    0.043333333
0.999900025    1.00E-04    1.00E-04    12004.45729    0    1.00E-04    78.81909548    15700    0.261666667
0.999910028    9.00E-05    9.00E-05    13189.36181    0    9.00E-05    77.22613065    15383    0.256383333
0.999920025    8.00E-05    8.00E-05    14663.1608    0    8.00E-05    85.75376884    17067    0.28445
0.999930019    7.00E-05    7.00E-05    16544.53266    0    7.00E-05    97.30150754    19378    0.322966667
0.999940016    6.00E-05    6.00E-05    19034.80402    0    6.00E-05    113.3366834    22554    0.3759
0.999950014    5.00E-05    5.00E-05    22492.8392    0    5.00E-05    133.7688442    26620    0.443666667
0.999960011    4.00E-05    4.00E-05    27629.55779    0    4.00E-05    163.120603    32476    0.541266667
0.999970009    3.00E-05    3.00E-05    36073.57286    0    3.00E-05    211.8140704    42151    0.702516667
0.999980007    2.00E-05    2.00E-05    52783.36181    0    2.00E-05    309.5376884    61614    1.0269
0.999990003    1.00E-05    1.00E-05    102095.9497    0    1.00E-05    599.5125628    119303    1.988383333
0.999991002    9.00E-06    9.00E-06    112952.5578    0    9.00E-06    670.1407035    133358    2.222633333
0.999992002    8.00E-06    8.00E-06    126633.8995    0    8.00E-06    757.7085427    150784    2.513066667
0.999993002    7.00E-06    7.00E-06    143969.5829    0    7.00E-06    875.2311558    174172    2.902866667
0.999994002    6.00E-06    6.00E-06    167092.598    0    6.00E-06    1003.854271    199767    3.32945
0.999995002    5.00E-06    5.00E-06    199373.392    0    5.00E-06    1183.085427    235434    3.9239
0.999996001    4.00E-06    4.00E-06    247769.0754    0    4.00E-06    1512.356784    300976    5.016266667
0.999997001    3.00E-06    3.00E-06    328359.2915    0    3.00E-06    1945.427136    387140    6.452333333
0.999998001    2.00E-06    2.00E-06    488816    0    2.00E-06    2507.829146    499074    8.3179
0.999999    1.00E-06    1.00E-06    969244.1558    0    1.00E-06    5722.160804    1138710    18.9785
0.9999991    9.00E-07    9.00E-07    1075569.915    0    9.00E-07    6469.055276    1287342    21.4557
0.9999992    8.00E-07    8.00E-07    1209469.04    0    8.00E-07    7172.030151    1427234    23.78723333
0.9999993    7.00E-07    7.00E-07    1380826.05    0    7.00E-07    8186.537688    1629128    27.15213333
0.9999994    6.00E-07    6.00E-07    1610095.312    0    6.00E-07    9600.678392    1910545    31.84241667
0.9999995    5.00E-07    5.00E-07    1929071.94    0    5.00E-07    11807.44221    2349681    39.16135
0.9999996    4.00E-07    4.00E-07    2409909.352    0    4.00E-07    14563.61809    2898167    48.30278333
0.9999997    3.00E-07    3.00E-07    3209632.161    0    3.00E-07    20176.22111    4015080    66.918
0.9999998    2.00E-07    2.00E-07    4811423.382    0    2.00E-07    28304.31156    5632558    93.87596667
0.9999999    1.00E-07    1.00E-07    9627046.156    0    1.00E-07    56264.20603    11196577    186.6096167
                                
                                599.0246833


dr-4-10-4-10-4                                
                                    
f2[0]    f2[1]    f2[2]    f2[3]    迭代次数n    平均准确率p-ave    δ    耗时ms/次    耗时ms/199次    耗时 min/199
0.526261475    0.470138296    0.473433824    0.470196578    3    0    0.5    0.72361809    144    0.0024
0.619481649    0.377210594    0.378727222    0.378469657    7    0    0.4    0.155778894    47    0.000783333
0.713542792    0.285969096    0.285711052    0.286628343    12    0    0.3    0.316582915    63    0.00105
0.808050416    0.191568156    0.192380965    0.19206912    20    0    0.2    0.391959799    78    0.0013
0.902437476    0.097327741    0.097530188    0.097340394    38    0    0.1    0.467336683    109    0.001816667
0.990051834    0.00994703    0.009956631    0.009950273    235    0    0.01    2.462311558    507    0.00845
0.999001067    9.99E-04    9.99E-04    9.99E-04    1398    0    0.001    12.98492462    2584    0.043066667
0.999900049    1.00E-04    9.99E-05    9.99E-05    10590    0    1.00E-04    74.13065327    14752    0.245866667
0.999910044    9.00E-05    9.00E-05    9.00E-05    11673    0    9.00E-05    77.95979899    15529    0.258816667
0.999920041    8.00E-05    8.00E-05    8.00E-05    13043    0    8.00E-05    88.72361809    17657    0.294283333
0.999930029    7.00E-05    7.00E-05    7.00E-05    14783    0    7.00E-05    100.798995    20075    0.334583333
0.999940023    6.00E-05    6.00E-05    6.00E-05    17128    0    6.00E-05    115.5527638    22995    0.38325
0.999950023    5.00E-05    5.00E-05    5.00E-05    20378    0    5.00E-05    141.6733668    28193    0.469883333
0.999960015    4.00E-05    4.00E-05    4.00E-05    25185    0    4.00E-05    175.1155779    34849    0.580816667
0.999970011    3.00E-05    3.00E-05    3.00E-05    33209    0    3.00E-05    230.638191    45897    0.76495
0.999980007    2.00E-05    2.00E-05    2.00E-05    49229    0    2.00E-05    339.8190955    67631    1.127183333
0.999990004    1.00E-05    9.99E-06    1.00E-05    97192    0    1.00E-05    671.6934673    133680    2.228
0.999991003    9.00E-06    9.00E-06    9.00E-06    107913    0    9.00E-06    740.879397    147437    2.457283333
0.999992003    8.00E-06    8.00E-06    8.00E-06    121242    0    8.00E-06    837.6030151    166685    2.778083333
0.999993002    7.00E-06    7.00E-06    7.00E-06    138604    0    7.00E-06    956.9949749    190442    3.174033333
0.999994002    6.00E-06    6.00E-06    6.00E-06    161638    0    6.00E-06    1119.080402    222697    3.711616667
0.999995002    5.00E-06    5.00E-06    5.00E-06    193006    0    5.00E-06    1340.954774    266862    4.4477
0.999996001    4.00E-06    4.00E-06    4.00E-06    240321    0    4.00E-06    1673.728643    333072    5.5512
0.999997001    3.00E-06    3.00E-06    3.00E-06    320678    0    3.00E-06    2218.623116    441506    7.358433333
0.999998    2.00E-06    2.00E-06    2.00E-06    481138    0    2.00E-06    3369.929648    670625    11.17708333
0.999999    1.00E-06    1.00E-06    1.00E-06    962243    0    1.00E-06    6656.326633    1324615    22.07691667
0.9999991    9.00E-07    9.00E-07    9.00E-07    1068340    0    9.00E-07    7402.738693    1473150    24.5525
0.9999992    8.00E-07    8.00E-07    8.00E-07    1202423    0    8.00E-07    8283.81407    1648481    27.47468333
0.9999993    7.00E-07    7.00E-07    7.00E-07    1375220    0    7.00E-07    9110.095477    1812943    30.21571667
0.9999994    6.00E-07    6.00E-07    6.00E-07    1601415    0    6.00E-07    10525.52261    2094580    34.90966667
0.9999995    5.00E-07    5.00E-07    5.00E-07    1927719    0    5.00E-07    12147.62312    2417392    40.28986667
0.9999996    4.00E-07    4.00E-07    4.00E-07    2410357    0    4.00E-07    15609.35678    3106310    51.77183333
0.9999997    3.00E-07    3.00E-07    3.00E-07    3220585    0    3.00E-07    20894.52261    4158010    69.30016667
0.9999998    2.00E-07    2.00E-07    2.00E-07    4829216    0    2.00E-07    31439.65829    6256492    104.2748667
0.9999999    1.00E-07    1.00E-07    1.00E-07    9688361    0    1.00E-07    64211.86432    12778161    212.96935
                                    
                                    665.2375


dr-2-10-2                            
                            
f2[0]    f2[1]    迭代次数n    平均准确率p-ave    δ    耗时ms/次    耗时ms/199次    耗时 min/199
0.526584111    0.470703963    1.869346734    0    0.5    0.472361809    110    0.001833333
0.61933022    0.378788514    5.316582915    0    0.4    0.16080402    47    0.000783333
0.714022291    0.285632622    10.34673367    0    0.3    0.08040201    31    0.000516667
0.806512411    0.192506914    18.5678392    0    0.2    0.16080402    47    0.000783333
0.902097214    0.097758283    39.7839196    0    0.1    0.236180905    47    0.000783333
0.99003051    0.009968748    326.8140704    0    0.01    1.487437186    312    0.0052
0.999000471    1.00E-03    2555.768844    0    0.001    9.201005025    1831    0.030516667
0.999900011    1.00E-04    21902.38693    0    1.00E-04    62.85427136    12508    0.208466667
0.999910009    9.00E-05    23880.13568    0    9.00E-05    63.48743719    12634    0.210566667
0.999920007    8.00E-05    27373.11558    0    8.00E-05    73.70854271    14669    0.244483333
0.999930008    7.00E-05    30471.34171    0    7.00E-05    82.66834171    16466    0.274433333
0.999940006    6.00E-05    33747.86935    0    6.00E-05    89.8241206    17875    0.297916667
0.999950004    5.00E-05    41400.74372    0    5.00E-05    111.1809045    22141    0.369016667
0.999960004    4.00E-05    50904.86935    0    4.00E-05    139.040201    27672    0.4612
0.999970002    3.00E-05    68669.09045    0    3.00E-05    184.2763819    36671    0.611183333
0.999980001    2.00E-05    98491.42211    0    2.00E-05    266.6532663    53096    0.884933333
0.999990001    1.00E-05    193272.4774    0    1.00E-05    524.718593    104451    1.74085
0.999991001    9.00E-06    206907.4774    0    9.00E-06    558.1105528    111064    1.851066667
0.999992001    8.00E-06    237203.201    0    8.00E-06    642.5778894    127873    2.131216667
0.999993    7.00E-06    269616.4372    0    7.00E-06    727.0201005    144692    2.411533333
0.999994    6.00E-06    308451.3015    0    6.00E-06    830.2512563    165220    2.753666667
0.999995    5.00E-06    366383.0905    0    5.00E-06    987.0050251    196414    3.273566667
0.999996    4.00E-06    441795.6482    0    4.00E-06    1193.38191    237499    3.958316667
0.999997    3.00E-06    587062.9196    0    3.00E-06    1594.281407    317262    5.2877
0.999998    2.00E-06    881343.3819    0    2.00E-06    2384.386935    474493    7.908216667
0.999999    1.00E-06    1691667.427    0    1.00E-06    4240.211055    843802    14.06336667
0.9999991    9.00E-07    1861192.327    0    9.00E-07    5102.648241    1015444    16.92406667
0.9999992    8.00E-07    2080246.372    0    8.00E-07    5709.417085    1136174    18.93623333
0.9999993    7.00E-07    2464329.97    0    7.00E-07    6725.005025    1338292    22.30486667
0.9999994    6.00E-07    2925796.92    0    6.00E-07    7890.638191    1570237    26.17061667
0.9999995    5.00E-07    3289760.563    0    5.00E-07    8888.251256    1768762    29.47936667
0.9999996    4.00E-07    4007427.271    0    4.00E-07    10831.90955    2155550    35.92583333
0.9999997    3.00E-07    5245088.296    0    3.00E-07    14310.68342    2847826    47.46376667
0.9999998    2.00E-07    7786895.241    0    2.00E-07    21688.41709    4316003    71.93338333
0.9999999    1.00E-07    1.58E+07    0    1.00E-07    42070.00503    8371946    139.5324333
                            
                                   457.6526833


dr-3-10-3                                
                                
f2[0]    f2[1]    f2[2]    迭代次数n    平均准确率p-ave    δ    耗时ms/次    耗时ms/199次    耗时 min/199
0.531998108    0.4668063    0.467841829    2.040201005    0    0.5    0.391959799    78    0.0013
0.625916993    0.374693698    0.373937912    5.577889447    0    0.4    0.236180905    78    0.0013
0.717575379    0.283496485    0.282197138    10.4321608    0    0.3    0.155778894    31    0.000516667
0.809919228    0.190881722    0.190713318    18.48241206    0    0.2    0.16080402    47    0.000783333
0.902821459    0.097322419    0.09703025    38.00502513    0    0.1    0.236180905    47    0.000783333
0.990045238    0.009953845    0.009955177    281.0904523    0    0.01    1.567839196    312    0.0052
0.999000849    9.99E-04    9.99E-04    1994.175879    0    0.001    8.261306533    1644    0.0274
0.999900027    1.00E-04    1.00E-04    16359.0402    0    1.00E-04    55.13567839    11020    0.183666667
0.999910024    9.00E-05    9.00E-05    18649.9598    0    9.00E-05    56.92462312    11344    0.189066667
0.999920021    8.00E-05    8.00E-05    20427.95477    0    8.00E-05    60.57286432    12069    0.20115
0.999930016    7.00E-05    7.00E-05    23575.8593    0    7.00E-05    70.74874372    14079    0.23465
0.999940017    6.00E-05    6.00E-05    26453.01508    0    6.00E-05    79.9798995    15931    0.265516667
0.999950013    5.00E-05    5.00E-05    31641.95477    0    5.00E-05    96.27638191    19159    0.319316667
0.999960009    4.00E-05    4.00E-05    38461.94975    0    4.00E-05    116.080402    23100    0.385
0.999970008    3.00E-05    3.00E-05    51233.01508    0    3.00E-05    155.4924623    30943    0.515716667
0.999980005    2.00E-05    2.00E-05    74906.1206    0    2.00E-05    226.8291457    45139    0.752316667
0.999990003    1.00E-05    1.00E-05    144249.7286    0    1.00E-05    437.2713568    87032    1.450533333
0.999991002    9.00E-06    9.00E-06    158850.8543    0    9.00E-06    479.3115578    95383    1.589716667
0.999992002    8.00E-06    8.00E-06    180718.5427    0    8.00E-06    545.5276382    108560    1.809333333
0.999993002    7.00E-06    7.00E-06    202380.0402    0    7.00E-06    622.5527638    123894    2.0649
0.999994001    6.00E-06    6.00E-06    240200    0    6.00E-06    722.5929648    143808    2.3968
0.999995001    5.00E-06    5.00E-06    279138.8844    0    5.00E-06    839.4120603    167050    2.784166667
0.999996001    4.00E-06    4.00E-06    344849.6935    0    4.00E-06    1036.477387    206264    3.437733333
0.999997001    3.00E-06    3.00E-06    459529.0302    0    3.00E-06    1381.035176    274831    4.580516667
0.999998    2.00E-06    2.00E-06    672539.7437    0    2.00E-06    2023.020101    402583    6.709716667
0.999999    1.00E-06    1.00E-06    1292568.874    0    1.00E-06    3888.683417    773855    12.89758333
0.9999991    9.00E-07    9.00E-07    1469246.196    0    9.00E-07    4528.236181    901121    15.01868333
0.9999992    8.00E-07    8.00E-07    1621744.271    0    8.00E-07    5122.98995    1019482    16.99136667
0.9999993    7.00E-07    7.00E-07    1797949.739    0    7.00E-07    5819.79397    1158147    19.30245
0.9999994    6.00E-07    6.00E-07    2091886.859    0    6.00E-07    6800.984925    1353401    22.55668333
0.9999995    5.00E-07    5.00E-07    2467525.844    0    5.00E-07    8110.522613    1613995    26.89991667
0.9999996    4.00E-07    4.00E-07    3216941.045    0    4.00E-07    9953.045226    1980658    33.01096667
0.9999997    3.00E-07    3.00E-07    4254122.518    0    3.00E-07    12569.71859    2501374    41.68956667
0.9999998    2.00E-07    2.00E-07    5986582.417    0    2.00E-07    18259.92462    3633725    60.56208333
0.9999999    1.00E-07    1.00E-07    1.23E+07    0    1.00E-07    38868.19095    7734773    128.9128833
                                
                                407.7492833

dr-4-10-4                                    
                                    
f2[0]    f2[1]    f2[2]    f2[3]    迭代次数n    平均准确率p-ave    δ    耗时ms/次    耗时ms/199次    耗时 min/199
0.535716861    0.463529881    0.462201609    0.464102577    3    0    0.5    0.547738693    109    0.001816667
0.626382757    0.370585994    0.369941534    0.372025326    7    0    0.4    0.221105528    51    0.00085
0.718509103    0.281085664    0.281285396    0.281171568    12    0    0.3    0.135678392    27    0.00045
0.810595708    0.189874827    0.189742401    0.188944534    20    0    0.2    0.180904523    40    0.000666667
0.903273004    0.096510407    0.096590552    0.096482455    42    0    0.1    0.311557789    62    0.001033333
0.99006448    0.009931742    0.009934172    0.009929011    347    0    0.01    1.768844221    352    0.005866667
0.999001338    9.99E-04    9.99E-04    9.99E-04    2942    0    0.001    8.376884422    1668    0.0278
0.99990005    1.00E-04    9.99E-05    9.99E-05    23884    0    1.00E-04    51.49748744    10254    0.1709
0.999910042    9.00E-05    9.00E-05    9.00E-05    37315    0    9.00E-05    54.46231156    10858    0.180966667
0.999920041    8.00E-05    8.00E-05    8.00E-05    26333    0    8.00E-05    60.04020101    11964    0.1994
0.99993003    7.00E-05    7.00E-05    7.00E-05    46405    0    7.00E-05    67.23115578    13387    0.223116667
0.999940028    6.00E-05    6.00E-05    6.00E-05    43844    0    6.00E-05    80.77386935    16075    0.267916667
0.999950023    5.00E-05    5.00E-05    5.00E-05    57098    0    5.00E-05    94.61809045    18837    0.31395
0.999960017    4.00E-05    4.00E-05    4.00E-05    63706    0    4.00E-05    117.3819095    23359    0.389316667
0.999970013    3.00E-05    3.00E-05    3.00E-05    102785    0    3.00E-05    152.3819095    30332    0.505533333
0.999980009    2.00E-05    2.00E-05    2.00E-05    131495    0    2.00E-05    223.3517588    44456    0.740933333
0.999990004    1.00E-05    1.00E-05    1.00E-05    203355    0    1.00E-05    432.8542714    86146    1.435766667
0.999991003    9.00E-06    9.00E-06    9.00E-06    296829    0    9.00E-06    485.1005025    96535    1.608916667
0.999992003    8.00E-06    8.00E-06    8.00E-06    363607    0    8.00E-06    553.4522613    110137    1.835616667
0.999993002    7.00E-06    7.00E-06    7.00E-06    421455    0    7.00E-06    624.6884422    124313    2.071883333
0.999994002    6.00E-06    6.00E-06    6.00E-06    405253    0    6.00E-06    720.0854271    143305    2.388416667
0.999995002    5.00E-06    5.00E-06    5.00E-06    438198    0    5.00E-06    846.7085427    168511    2.808516667
0.999996001    4.00E-06    4.00E-06    4.00E-06    733902    0    4.00E-06    1062.241206    211386    3.5231
0.999997001    3.00E-06    3.00E-06    3.00E-06    747879    0    3.00E-06    1375.070352    273639    4.56065
0.999998001    2.00E-06    2.00E-06    2.00E-06    1245116    0    2.00E-06    2037.321608    405442    6.757366667
0.999999    1.00E-06    1.00E-06    1.00E-06    2046819    0    1.00E-06    3900.668342    776234    12.93723333
0.9999991    9.00E-07    9.00E-07    9.00E-07    2010564    0    9.00E-07    4260.743719    847889    14.13148333
0.9999992    8.00E-07    8.00E-07    8.00E-07    2166817    0    8.00E-07    4823.21608    959820    15.997
0.9999993    7.00E-07    7.00E-07    7.00E-07    3092601    0    7.00E-07    5536.517588    1101799    18.36331667
0.9999994    6.00E-07    6.00E-07    6.00E-07    2729326    0    6.00E-07    6414.592965    1276520    21.27533333
0.9999995    5.00E-07    5.00E-07    5.00E-07    3698517    0    5.00E-07    7769.160804    1546067    25.76778333
0.9999996    4.00E-07    4.00E-07    4.00E-07    5727957    0    4.00E-07    9313.638191    1853418    30.8903
0.9999997    3.00E-07    3.00E-07    3.00E-07    6026219    0    3.00E-07    12582.55276    2503943    41.73238333
0.9999998    2.00E-07    2.00E-07    2.00E-07    1.07E+07    0    2.00E-07    18166.89447    3615217    60.25361667
0.9999999    1.00E-07    1.00E-07    1.00E-07    2.71E+07    0    1.00E-07    36836.72864    7330514    122.1752333
                                    
                                    393.5444333

本次实验原始数据比较多有感兴趣的朋友可以在我的资源里下载

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值