#1064. Complete Binary Search Tree【完全二叉树 + 二叉搜索树 + 树的遍历】

原题链接

Problem Description:

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
  • Both the left and right subtrees must also be binary search trees.

A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N N N ( ≤ 1000 \leq 1000 1000). Then N N N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input:

10
1 2 3 4 5 6 7 8 9 0

Sample Output:

6 3 8 1 5 7 9 0 2 4

Problem Analysis:

前置知识:
满二叉树:

1、第 i i i 层的节点数目为 2 i 2^i 2i

2、节点总数和深度的关系: n = ∑ i = 0 k 2 i = 2 k + 1 − 1 n = \sum\limits_{i=0}^k 2^i = 2^{k + 1} - 1 n=i=0k2i=2k+11

完全二叉树:

1、具有 n n n 个节点的完全二叉树的深度(根节点的深度定义为 0 0 0)为 k = ⌊ log ⁡ 2 n ⌋ k = \lfloor \log_2 n \rfloor k=log2n

2、最后一层的节点数为: n − ( 2 k − 1 ) = n + 1 − 2 k n - (2^k - 1) = n + 1 - 2^k n(2k1)=n+12k

3、左子树的节点数为(总结点个数为 n n n):

l ( n ) = { n − 2 k − 1 , n + 1 − 2 k ≤ 2 k − 1   2 k − 1 , n + 1 − 2 k > 2 k − 1 l(n) = \begin{cases} n - 2^{k-1}, & n + 1 - 2^k\leq 2^{k-1} \\\ 2^k - 1, & n + 1 - 2^k > 2^{k-1} \end{cases} l(n)={n2k1, 2k1,n+12k2k1n+12k>2k1

因为最后一层全部都在左子树,右子树为满二叉树,高度为 k − 1 k-1 k1

因为左子树为满二叉树,高度为 k − 1 k - 1 k1

4、右子树: r ( n ) = n − l ( n ) r(n) = n - l(n) r(n)=nl(n)

二叉搜索树有一个比较重要的性质,那就是其节点权值的中序遍历是一个升序序列,又因为这是一颗完全二叉树,所以可以直接建树:

unordered_map<int, int> l, r;
for (int i = 1; i <= n; i ++ )
{
	if (2 * i <= n) l[i] = i << 1;
	if (2 * i + 1 <= n) r[i] = i << 1 | 1;
}

然后进行 DFS 中序遍历,根节点为 1 号节点,在这个过程中将权值从小到大依次填入每个节点:

void dfs(int u)
{
	int left = l[u], right = r[u];
	if (left) dfs(left);
	w[u] = weight[cnt ++ ];
	if (right) dfs(right);
}

由于建树时才用二叉树的性质进行建树,因此节点编号按从小到大的顺序排列恰好就是这棵树的层序遍历。

Code

#include <iostream>
#include <cstring>
#include <algorithm>
#include <unordered_map>

using namespace std;

const int N = 1010;

int n, k; // n节点总数,k为最深的深度(根节点深度为0)
unordered_map<int, int> l, r;
int weight[N], cnt;
int w[N];

void dfs(int u) // 当前搜索到的节点编号,当前节点所在的深度
{
    // 二叉搜索树中序遍历是所有权值从小到大排列
    int left = l[u], right = r[u];

    if (left) dfs(left);

    w[u] = weight[cnt ++ ]; // 填每个节点的权值
    
    if (right) dfs(right);
}

int main()
{
    cin >> n;
    for (int i = 1; i <= n; i ++ ) // 建立完全二叉树
    {
        if (2 * i <= n) l[i] = i << 1;
        if (2 * i + 1 <= n) r[i] = i << 1 | 1;
    }

    for (int i = 0; i < n; i ++ ) cin >> weight[i];
    sort(weight, weight + n);

    dfs(1);

    for (int i = 1; i <= n; i ++ ) 
    {
        cout << w[i];
        if (i != n) cout << ' ';
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值