从零开始:在服务器上部署大模型并集成到 vscode +Cline使用

1. 引言 (Introduction)

欢迎来到本篇技术博客! 在本文中, 我将引导你一步一步地在阿里云服务器上部署 Qwen 大模型,并将其集成到 Cline 插件中。

我们将从零开始,详细介绍每个步骤,确保即使是初学者也能轻松上手。

请在此添加图片描述

近年来,大型语言模型(LLMs)展现出了强大的自然语言处理能力,吸引了越来越多的关注。 Qwen 系列模型是阿里巴巴开源的一系列强大的大语言模型, 具有优秀的性能和广泛的应用场景。

Ollama 是一个易于使用的工具, 可以让你在本地轻松部署和运行大模型, 并提供 API 接口供外部调用。 而 Cline 插件则提供了一个便捷的 UI 界面, 可以连接到各种大模型,并进行交互式对话。

本篇博客的目标是:

  • 在阿里云服务器上,部署一个强大的 Qwen 大模型。
  • 使用 Ollama 提供 API 接口,方便本地和远程调用。
  • 使用 Cline 插件连接到 Ollama API, 并进行测试。

我们将使用以下配置:

  • 阿里云服务器 (CPU 机器)。
  • Ollama (最新版本)。
  • Qwen2.5:1.5b 模型 (当然你可以选择更大的模型)。
  • Cline 插件 (一个客户端, 用于连接到 Ollama API)。

2. 准备工作 (Prerequisites)

在开始之前, 你需要确保你的环境满足以下条件:

  • 阿里云服务器:

你需要一个运行 Linux (例如 Ubuntu, CentOS) 的阿里云服务器。

服务器需要有公网 IP 地址。

服务器需要有足够的 CPU 核心数、 内存 (至少 4GB 以上) 以及 磁盘空间 (至少 20 GB 以上)。

  • Xshell 连接工具 (或其他 SSH 工具):

你需要使用 SSH 客户端连接工具, 例如 Xshell 或者其他类似的工具,连接到你的阿里云服务器。

你需要知道服务器的 IP 地址, 用户名和密码。

  • 网络:

你需要确保你的阿里云服务器可以连接互联网, 以便下载 Ollama 和模型。

3. Ollama 安装 (Ollama Installation)

  • 下载 Ollama:

访问 Ollama 的官方 GitHub Release 页面 (https://github.com/ollama/ollama/releases), 找到最新版本的 Linux 安装包下载链接。 你应该看到类似 ollama-linux-amd64.tgz 的文件。

使用 wget 下载安装包, 并将 v0.x.x 替换为你实际的版本号:

wget https://github.com/ollama/ollama/releases/
### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型对其进行微调的过程。虽然这里展示的例子不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值