熟悉陌生的2-范数(向量的模)

向量的模,表示向量的长度:我们以前就学过向量,一个一维的向量比如 A B ⃗ = [ 1 , 2 , 3 ] \vec {AB}=[1,2,3] AB =[1,2,3],也表示三维空间中的一个点。它的模的计算公式: ∣ A B ⃗ ∣ = 1 2 + 2 2 + 3 2 |\vec{AB}|=\sqrt{1^2+2^2+3^2} AB =12+22+32 ,这个既表示 A B ⃗ \vec{AB} AB 的长度,也表示这点到原点的距离。

#2- 范数:

对于某个向量 X ⃗ = [ x 1 , x 2 , x 3 . . . x n ] \vec{X}=[x_1,x_2,x_3...x_n] X =[x1,x2,x3...xn],其2-范数表示为:

∣ ∣ X ⃗ ∣ ∣ 2 = x 1 2 + x 2 2 + x 3 2 . . . x n 2 ||\vec{X}||_2=\sqrt{x_1^2+x_2^2+x_3^2...x_n^2} X 2=x12+x22+x32...xn2

所以2-范数就是向量的模,对于向量来说2范数就是: X T X X^T X XTX
但是对于某一个矩阵A来说:其2-范数就是A的转置 A T A^T AT乘以A的矩阵的最大特征值。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值