向量的模,表示向量的长度:我们以前就学过向量,一个一维的向量比如 A B ⃗ = [ 1 , 2 , 3 ] \vec {AB}=[1,2,3] AB=[1,2,3],也表示三维空间中的一个点。它的模的计算公式: ∣ A B ⃗ ∣ = 1 2 + 2 2 + 3 2 |\vec{AB}|=\sqrt{1^2+2^2+3^2} ∣AB∣=12+22+32,这个既表示 A B ⃗ \vec{AB} AB的长度,也表示这点到原点的距离。
#2- 范数:
对于某个向量 X ⃗ = [ x 1 , x 2 , x 3 . . . x n ] \vec{X}=[x_1,x_2,x_3...x_n] X=[x1,x2,x3...xn],其2-范数表示为:
∣ ∣ X ⃗ ∣ ∣ 2 = x 1 2 + x 2 2 + x 3 2 . . . x n 2 ||\vec{X}||_2=\sqrt{x_1^2+x_2^2+x_3^2...x_n^2} ∣∣X∣∣2=x12+x22+x32...xn2