sequence2sequence 论文笔记

sequence2sequence 论文总结
问题:对于DNN(Deep neural network )来说,其需要输入和输出的维度是已知的并且是固定的.但是对于序列问题,常常是长度不固定的,因此传统DNN结构是不可用的.

在本篇文章中直接使用LSTM网络结构来解决这个问题,基本想法就是使用一个LSTM结构来处理输入,由于输入是序列,处理的时候是按序列时间步来处理的,经过处理后得到一个固定维度的向量,最后使用另一个LSTM结构来对输出的固定长度的向量进行处理得到最终输出向量,此时输出向量长度是可变的。具体我们看图:
在这里插入图片描述可以看见第一个LSTM结构对输入序列ABC进行处理,每次处理一个时间步,然后得到固定长度向量W。然后第二个LSTM结构将W作为第一个时间步输入,得到输出X,然后将X作为第二个时间步输入,得到Y,以此我们就可以得到输出XYZ,可以看到输出是可以任意长度的。

为甚么输出可以任意长度?

首先第一点:第一个LSTM结构中没有使用每个时间步的输出,而只使用了最后一个时间步输出 .
第二点:LSTM是循环神经网络一种,第二个LSTM结构将上一个时刻输出作为当前输入,这样就可以不断循环下去。

为甚么可以这样是这样编码解码的结构?不怕信息丢失?

注意第二个LSTM结构不尽以W作为输入,而且还继承了前一个LSTM的隐层状态,而LSTM的三道门结构可以保证时序信息的整合,因此这样的结构是可行得.

注意文章中还提到:最终我们发现在原句中逆转单词顺序,会取得明显的提升,因为这样做会在源语句和目标句子之间引入许多短期依赖关系,这使得优化问题更容易。
The model

RNN对时序的处理是这样的:
给定一个序列输入 ( x 1 , x 2 , . . . , x T ) (x_1,x_2,...,x_T) (x1,x2,...,xT),那么我们可以通过一个RNN结构得到一个序列输出 ( y 1 , y 2 , . . . . , y T ) (y_1,y_2,....,y_T) (y1,y2,....,yT),通过训环执行下面式子: h t = s i g m ( W h x x t + W h h h t − 1 ) h_t=sigm(W^{hx}x_t+W^{hh}h_{t-1}) ht=sigm(Whxxt+Whhht1) y t = W y h h t y_t=W^{yh}h_t yt=Wyhht
这里我们就成 h t h_t ht是RNN在t时刻的隐藏状态,可以看见 这样的去处理序列结构的化输入输出都必须是相同长度的,这样就不能对应变长的输出(自然语言处理问题基本上输入输出序列长度是不同的),一个简单的解决就是前面提到的两点:首先第一点,第一个LSTM结构中没有使用每个时间步的输出,而只使用了最后一个时间步输出(隐层状态) .第二点,LSTM是循环神经网络一种,第二个LSTM结构将上一个时刻输出作为当前输入,这样就可以不断循环下去得到不同长度的输出。

用概率学来解释:
整个LSTM结构是为了去估计条件概率 p ( y 1 , y 2 , . . , y T ′ ∣ x 1 , x 2 , . . , x T ) p(y_1,y_2,..,y_{T{'}}|x_1,x_2,..,x_T) p(y1,y2,..,yTx1,x2,..,xT),这里 T T T不一定等于 T ′ T{'} T。过程是这样,首先第一个LSTM层将输入 x 1 , x 2 , . . , x T x_1,x_2,..,x_T x1,x2,..,xT处理为一个固定长度向量 v v v,然后在第二个LSTM中进行标准的循环网络计算,第二个LSTM结构以上一个LSTM的最后输出(隐层状态)作为第一个时间步输入,并且继承上一个LSTM的隐层状态 v v v,也就是用 v v v初始化自己的隐层状态.所以有:
p ( y 1 , y 2 , . . , y T ′ ∣ x 1 , x 2 , . . , x T ) = ∏ t = 1 T ′ p ( y t ∣ v , y 1 , y 2 , . . , x t − 1 ) p(y_1,y_2,..,y_{T{'}}|x_1,x_2,..,x_T)=\prod_{t=1}^{T{'}}p(y_t|v,y_1,y_2,..,x_{t-1}) p(y1,y2,..,yTx1,x2,..,xT)=t=1Tp(ytv,y1,y2,..,xt1)

倒置输入

比如我们学习 a , b , c a,b,c a,b,c α , β , γ \alpha,\beta,\gamma α,β,γ的映射,那么输入时按 c , b , a c,b,a c,b,a的顺序输入,通过这种方式,使 a a a α \alpha α靠的更近, b b b β \beta β靠的更近.

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值