论文阅读——序列到序列模型(Seq2seq)

本文介绍了序列到序列学习的研究,重点讨论了使用LSTM进行序列映射的方法。LSTM首先读取输入序列,将其编码为固定维向量,然后解码出输出序列。实验中发现,使用两个独立的LSTM,深层网络(如四层LSTM)以及输入序列反向处理,有助于优化问题的解决。
摘要由CSDN通过智能技术生成

论文:Sequence to Sequence Learning with Neural Networks

作者:Ilya Sutskever et al.

1  Introduction

背景:深度神经网络(Deep Neural Networks)非常强大,能解决很多困难问题(如语音识别、视觉图像识别)。

问题:尽管DNNs 具有灵活性和强大功能,但它只能应用于输入和目标可以用固定维数的向量进行合理编码的问题。这是一个很大的限制,因为许多重要的问题需要用长度未知的序列来表达。因此,一种学习将序列映射到序列的域独立方法将是有用的。

解决办法:用一个LSTM读取输入序列,用一个固定维向量表示,然后用另一个LSTM从该向量中提取出输出序列。如图所示。

 (请注意,在这里LSTM 反向读取输入句子,因为这样做会在数据中引入许多短期依赖关系,从而使优化问题变得更加容易。)

2  The Model

        给定一个输入序列 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值