K-SVD
Rachel Zhang
1. k-SVD introduction
1. K-SVD usage:
Design/Learn a dictionary adaptively to betterfit the model and achieve sparse signal representations.
2. Main Problem:
Y = DX
Where Y∈R(n*N), D∈R(n*K), X∈R(k*N), X is a sparse matrix.
N is # of samples;
n is measurement dimension;
K is the length of a coefficient.
2. Derivation from K-Means
3. K-Means:
1) The sparse representationproblem can be viewed as generalization of the VQ objective. K-SVD can be viewed as generalization of K-Means.
2) K-Means algorithm for vectorquantization:
Dictionary of VQ codewords is typically trained using K-Means algorithm.
When Dictionary D is given, each signal is represented as its closestcodeword (under l2-norm distance). I.e.
Yi = Dxi
Where xi = ej is a vector from the trivial basis,with all zero entries except a one in the j-th position.
3) VQ的字典训练:
K-Means被视作一个sparse coding的特例,在系数x中只有一个非零元,MSE定义为: