K-SVD简述——字典学习,稀疏编码

K-SVD是用于稀疏信号表示的一种算法,它是K-Means的推广。通过迭代求解系数编码并更新字典,旨在找到适应模型的字典。在K-SVD中,目标函数的优化涉及矩阵的秩一分解,并通过保留非零系数进行SVD更新,以保持稀疏性。实验表明,适当选择字典大小和稀疏度对算法效果至关重要。
摘要由CSDN通过智能技术生成
               

K-SVD

Rachel Zhang

 

1. k-SVD introduction

1.     K-SVD usage:

Design/Learn a dictionary adaptively to betterfit the model and achieve sparse signal representations.

2.     Main Problem:

Y = DX

Where Y∈R(n*N), D∈R(n*K), X∈R(k*N), X is a sparse matrix.

N is # of samples;

n is measurement dimension;

K is the length of a coefficient.



 

2. Derivation from K-Means

3.       K-Means:

1)       The sparse representationproblem can be viewed as generalization of the VQ objective. K-SVD can be viewed as generalization of K-Means.

2)       K-Means algorithm for vectorquantization:

Dictionary of VQ codewords is typically trained using K-Means algorithm.

When Dictionary D is given, each signal is represented as its closestcodeword (under l2-norm distance). I.e.

Yi = Dxi

Where xi = ej is a vector from the trivial basis,with all zero entries except a one in the j-th position.

3)       VQ的字典训练:

K-Means被视作一个sparse coding的特例,在系数x中只有一个非零元,MSE定义为:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值