K-SVD字典学习算法

1.提出问题:什么是稀疏表示
假设我们用一个MN的矩阵表示数据集Y,每一行代表一个样本,每一列代表样本的一个属性,一般而言,该矩阵是稠密的,即大多数元素不为0。
稀疏表示的含义是,寻找一个系数矩阵X(K
N)以及一个字典矩阵D(MK),使得DX尽可能的还原Y,且X尽可能的稀疏。X便是Y的稀疏表示。

算法思想

算法求解思路为交替迭代的进行稀疏编码和字典更新两个步骤. K-SVD在构建字典步骤中,K-SVD不仅仅将原子依次更新,对于原子对应的稀疏矩阵中行向量也依次进行了修正. 不像MOP,K-SVD不需要对矩阵求逆,而是利用SVD数学分析方法得到了一个新的原子和修正的系数向量.

固 定 系 数 矩 阵 X 和 字 典 矩 阵 D , 字 典 的 第 k 个 原 子 为 d k , 同 时 d k 对 应 的 稀 固定系数矩阵X和字典矩阵D,字典的第k个原子为d_k,同时d_k对应的稀 XDkdkdk
疏 矩 阵 为 X 中 的 第 k 个 行 向 量 x T k . 假 设 当 前 更 新 进 行 到 原 子 d k , 样 本 矩 阵 和 疏矩阵为X中的第k个行向量x^k_T. 假设当前更新进行到原子d_k,样本矩阵和 XkxTk.dk字典逼近的误差为:
在这里插入图片描述
在 得 到 当 前 误 差 矩 阵 E k 后 , 需 要 调 整 d k 和 X T k , 使 其 乘 积 与 E k 的 误 差 尽 可 能 的 小 . 在得到当前误差矩阵E_k后,需要调整d_k和X^k_T,使其乘积与E_k的误差尽可能的小. EkdkXTk使Ek.
如 果 直 接 对 d k 和 X T k 进 行 更 新 , 可 能 导 致 x T k 不 稀 疏 . 所 以 可 以 先 把 原 有 向 量 x T k 中 零 如果直接对d_k和X^k_T进行更新,可能导致x^k_T不稀疏. 所以可以先把原有向量x^k_T中零 dkXTkxTk.xTk
元 素 去 除 , 保 留 非 零 项 , 构 成 向 量 x R k , 然 后 从 误 差 矩 阵 E k 中 取 出 相 应 的 列 向 量 , 元素去除,保留非零项,构成向量x^k_R,然后从误差矩阵E_k中取出相应的列向量, xRkEk
构 成 矩 阵 E k R . 对 E k R 进 行 S V D ( S i n g u l a r V a l u e D e c o m p o s i t i o n ) 分 解 , 有 E k R = 构成矩阵E^R_k. 对E^R_k进行SVD(Singular Value Decomposition)分解,有E^R_k= EkR.EkRSVDSingularValueDecompositionEkR=
U Δ V T , 由 U 的 第 一 列 更 新 d k , 由 V 的 第 一 列 乘 以 Δ ( 1 , 1 ) 所 得 结 果 更 新 x R k . UΔV^T,由U的第一列更新d_k,由V的第一列乘以Δ(1,1)所得结果更新x^k_R. UΔVTUdkVΔ(1,1)xRk.

代码

import numpy as np
import matplotlib.pyplot as plt
from numpy import *
import scipy.io as sio
import random
from sklearn import linear_model
import scipy.misc
from PIL import Image
def esErrDic(data,recons):
    m,n=data.shape
    esErr=0
    for i in range(m):
        for j in range(n):
            esErr+=(data[i][j]-recons[i][j])**2
    return esErr/(m*n) 
class KSVD(object):
    def __init__(self, n_components, max_iter=100, tol=1e-6,n_nonzero_coefs=None):
        """
        稀疏模型Y = DX,Y为样本矩阵,使用KSVD动态更新字典矩阵D和稀疏矩阵X
        :param n_components: 字典所含原子个数(字典的列数)
        :param max_iter: 最大迭代次数
        :param tol: 稀疏表示结果的容差
        :param n_nonzero_coefs: 稀疏度
        """
        self.dictionary = None
        self.sparsecode = None 
        self.max_iter = max_iter 
        self.tol = tol 
        self.n_components = n_components 
        self.n_nonzero_coefs = n_nonzero_coefs
    def _initialize(self, y):
        """
        初始化字典矩阵
        """
        u, s, v = np.linalg.svd(y)
        self.dictionary = u[:, :self.n_components]
    def _update_dict(self, y, d, x):
        """
        使用KSVD更新字典的过程
        """
        for i in range(self.n_components):
            index = np.nonzero(x[i, :])[0]#选出Xk中非零的元素下标
            if len(index) == 0:
                continue
            d[:, i] = 0
            r = (y - np.dot(d, x))[:, index] 
            u, s, v = np.linalg.svd(r, full_matrices=False) 
            d[:, i] = u[:, 0].T 
            x[i, index] = s[0] * v[0, :]
        return d, x
    def fit(self, y):
        """
        KSVD迭代过程
        """
        self._initialize(y)
        for i in range(self.max_iter):
            x = linear_model.orthogonal_mp(self.dictionary, y, n_nonzero_coefs=self.n_nonzero_coefs)
            e = np.linalg.norm(y - np.dot(self.dictionary, x)) 
            if e < self.tol:
                break
            self._update_dict(y, self.dictionary, x)
        self.sparsecode = linear_model.orthogonal_mp(self.dictionary, y, n_nonzero_coefs=self.n_nonzero_coefs) 
        return self.dictionary, self.sparsecode
if __name__ == '__main__':
    file='G:/lecture of grade one/pattern recognition/trial_two/train_data2_807802844.mat'
    Img=loadData(file)
    #字典学习部分代码,其中KSVD的参数就是原子个数,可修改
    ksvd = KSVD(100)
    dictionary, sparsecode = ksvd.fit(Img['Data'])
    recons=dictionary.dot(sparsecode)
    err=esErrDic(Img['Data'],recons)
	'''
    #测试KSVD代码的调试代码,选择一张图片,用自己编写的KSVD对其进行字典学习
    image =Image.open('/home/swh/Downloads/scene.jpeg')
    image = np.array(image)
    image=image[:,:,0]
    im_ascent = image.astype('float32')
    #im_ascent = scipy.misc.ascent().astype(np.float)
    ksvd = KSVD(30) 
    dictionary, sparsecode = ksvd.fit(im_ascent) 
    plt.figure() 
    plt.subplot(1, 2, 1) 
    plt.imshow(im_ascent) 
    plt.subplot(1, 2, 2) 
    recon=dictionary.dot(sparsecode)
    plt.imshow(recon) 
    plt.show()
    '''
        
### 回答1: K-SVD字典学习算法是一种基于稀疏表示的字典学习算法,它可以用于信号处理、图像处理、语音识别等领域。该算法的核心思想是通过迭代更新字典和稀疏表示系数,使得字典能够更好地表示原始信号。在MATLAB中,可以使用K-SVD工具箱来实现该算法。 ### 回答2: K-SVD字典学习算法是一种基于稀疏编码思想的字典学习算法,通过学习数据集中的原子信息,构建出一个由原子组成的字典,使得该字典能够最好地表示数据集。在该算法中,将待处理的数据进行稀疏表示,通过迭代优化更新字典,直到收敛为止。 K-SVD算法的步骤如下:首先将待处理的数据进行预处理,通过去除均值和进行归一化,然后将数据进行单位化。接着,确定字典的初始值,可以使用随机矩阵或者先验知识初始化,然后对于每一个样本,使用一个稀疏编码方式求得其系数向量,并且根据系数向量进行字典的更新。 在K-SVD字典学习算法中,字典的更新使用乘法更新方法,通过逐个原子的迭代更新字典矩阵,重新计算每个训练样本的系数向量和重构误差。当重构误差收敛时,迭代结束,得到最终的字典矩阵。 K-SVD字典学习算法在图像压缩、人脸识别、图像修复等领域得到了广泛应用。在MATLAB中,该算法可通过调用spams包中的ksvd方法进行实现。通过调用相应的函数接口,即可实现K-SVD字典学习算法。 ### 回答3: K-SVD字典学习算法是一种基于稀疏表示的字典学习方法,其目的是通过学习稀疏表示的整合来生成能够最好地表达信号的基本元素集合。此算法最初由Aharon等人于2006年提出,被证明是一种具有高准确性和鲁棒性的字典学习方法。 K-SVD算法的核心是基于块稀疏表示方法的矩阵分解,该方法能够将高维信号表示成一些高度凝聚的字典元素。通过重复更新字典和系数矩阵,不断优化整个分解过程,以提高字典表示能力。 在Matlab中,可以利用SparseLab工具箱轻松地实现K-SVD算法。对于K-SVD字典学习的首要步骤是字典初始化。通常将字典元素初始化为信号数据中的随机样本,并通过k-means算法进行聚类,确立成字典的原子(字典元素)。之后,通过矩阵的分解,进行稀疏表示并通过迭代优化过程,持续更新字典和系数矩阵,最终生成一个可以完美表示信号的字典。 总之,K-SVD算法是一种行之有效的字典学习技术,在很多领域都有广泛的应用,例如语音处理,图像处理和信号处理等。在Matlab上,我们可以利用基于SparseLab工具箱的K-SVD实现高效、灵活且精确的字典学习
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值