042基于深度学习的手指静脉识别

该博客介绍了如何基于深度学习实现手指静脉识别,包括数据集制作、模型训练、模型应用和PyQT界面实现。文章讲解了CNN的基础知识,如卷积层、池化层的作用,以及AlexNet、GoogleNet、VGG、ResNet和MobileNet等经典网络结构。通过实例展示了深度学习在生物识别领域的潜力。
摘要由CSDN通过智能技术生成

demo仓库和视频演示找042期:

到此一游7758258的个人空间_哔哩哔哩_bilibili

效果展示图如下:

代码文件展示如下:

运行01制作数据集txt文本.py可以读取Database文件下的图片保存txt文本

运行02训练模型.py可以训练模型

运行03可以调用模型对单张图片进行识别

运行04pyqt.py可以生成一个可视化的界面,通过点击按钮对单张图片进行识别。

科普下卷积神经网络相关知识:

CNN是卷积神经网络(Convolutional Neural Network)的缩写。它是一种前馈神经网络,特别适用于处理具有网格状结构的数据,例如图像、视频和声音等。CNN由多个卷积层、池化层和全连接层组成。

CNN的核心思想是通过卷积操作和池化操作来提取输入数据中的特征。卷积层使用卷积核对输入数据进行滑动窗口操作,以捕捉不同位置的局部特征。通过堆叠多个卷积层,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值