毕业设计ing,但中途要出去一波。做个记录,备忘。
基于jetson nano和yolov5 的 车行人检测。
目前已经做的工作:
1、数据集的制作,原本是用的老师给的自己拍的一些数据(含夜间),但效果一般。更换BDD100K的智能驾驶数据集。
但智能驾驶的数据集的分类有10种,还有一些比较小的目标,不能直接拿过来用。
这里的工作进行了数据清洗,将小目标去除(小于图片的千分之一),将非人和车的标签去除,并将其转化成yolo格式数据集。
参考两位博主的代码:
【玩转yolov5】使用bdd100k数据集训练行人和全车模型,链接:https://blog.csdn.net/ChuiGeDaQiQiu/article/details/113415081
bdd100k数据集制作用于YOLOv3训练,链接:https://blog.csdn.net/fly_wt/article/details/98957748
我整合了一下生成了试用我自己的。(保留夜间)
import json
# 这里是我需要的10个类别
categorys = ['car', 'bus', 'person', 'bike', 'truck', 'motor', 'train', 'rider', 'traffic sign', 'traffic light']
##但我想归类 将 car bus truck 0 1 4归为一类 0 2 person归为一类 1
def parseJson(jsonFile):
'''
params:
jsonFile -- BDD00K数据集的一个json标签文件
return:
返回一个列表的列表,存储了一个json文件里面的方框坐标及其所属的类,
'''