多元建模基础(四):降维技术

1 因子模型:

1)定义:

\sum =cov(X)=B\Omega B'+\Upsilon,并且有:

换言之,如果某随机变量的协方差矩阵可以表示为: ,那么X就会有一个因子模型

2)因子模型的例子:

等相关性矩阵模型:随机变量X的边际分布是标准边际分布且两两之间相关系数相等。则其协方差矩阵可以表示为,令,显然有1)中形式,用如下方法定义公共因子:

由此我们得到一个单因子模型,F均值为0,方差为1,并且这样的因子与误差项满足因子模型的所有假设。另外,当X服从高斯分布时,我们从方便的角度考虑会设Y也服从高斯分布,此时公共因子服从正态分布,误差向量服从正态分布,不同误差项之间独立,误差项,可以将X分量表示为如下形式:

,F与Z均为独立的标准高斯随机向量

2 统计估计策略:

本节主要讨论因子模型因子的分类

1)常用的因子模型:

宏观经济因子模型:

基本面因子模型:

统计因子模型:

 2)因子模型与系统性风险:

在一个较大的风险组合中,对风险影响更大的应当是系统性风险,而不是误差项,下面举例说明:

3)估计宏观经济因子模型:

有两种等价的方法:一元回归与多元回归

 

4)估计基本面因子模型:

5)主成分分析法:

谱分解定理

对X进行中心化与旋转变换:

其中

则第j个主成分为:

由此,可以得出Y的一些性质:

 各主成分的方差和等于样本分量方差和:

 将主成分作为因子:

 用样本估计主成分:

得到基于样本的因子模型:

注:这种方法推出的因子模型只是一个近似因子模型,并不具有误差项协方差矩阵为对角阵、误差项与因子不想关的性质

 

 

 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值