1 因子模型:
1)定义:
,并且有:
换言之,如果某随机变量的协方差矩阵可以表示为:
,那么X就会有一个因子模型
2)因子模型的例子:
等相关性矩阵模型:随机变量X的边际分布是标准边际分布且两两之间相关系数相等。则其协方差矩阵可以表示为,令
,显然有1)中形式,用如下方法定义公共因子:
由此我们得到一个单因子模型,F均值为0,方差为1,并且这样的因子与误差项满足因子模型的所有假设。另外,当X服从高斯分布时,我们从方便的角度考虑会设Y也服从高斯分布,此时公共因子服从正态分布,误差向量服从正态分布,不同误差项之间独立,误差项,可以将X分量表示为如下形式:
,F与Z均为独立的标准高斯随机向量
2 统计估计策略:
本节主要讨论因子模型因子的分类
1)常用的因子模型:
宏观经济因子模型:
基本面因子模型:
统计因子模型:
2)因子模型与系统性风险:
在一个较大的风险组合中,对风险影响更大的应当是系统性风险,而不是误差项,下面举例说明:
3)估计宏观经济因子模型:
有两种等价的方法:一元回归与多元回归
4)估计基本面因子模型:
5)主成分分析法:
谱分解定理
对X进行中心化与旋转变换:
其中
则第j个主成分为:
由此,可以得出Y的一些性质:
各主成分的方差和等于样本分量方差和:
将主成分作为因子:
用样本估计主成分:
得到基于样本的因子模型:
注:这种方法推出的因子模型只是一个近似因子模型,并不具有误差项协方差矩阵为对角阵、误差项与因子不想关的性质