图像检测是图像分割,图像识别的基础,也是不可缺少的关键。在视觉计算理论框架中,抽取二维图像的边缘、角点、纹理等基本特征,是整个框架的第一步;本文章对Harris角点算法做了比较详细的理论介绍以及相关实现。
Part One:角点类型介绍
在现实世界中,角点对应于物体的拐角,道路的十字路口、丁字路口等。从图像分析的角度来定义角点可以有以下两种定义:
角点可以是两个边缘的角点;
角点是邻域内具有两个主方向的特征点 前者往往需要对图像边缘进行编码,这在很大程度上依赖于图像的分割与边缘提取,具有相当大的难度和计算量,且一旦待检测目标局部发生变化,很可能导致操作的失败。早期主要有Rosenfeld和Freeman等人的方法,后期有CSS等方法。基于图像灰度的方法通过计算点的曲率及梯度来检测角点,避免了第一类方法存在的缺陷,此类方法主要有Moravec算子、Forstner算子、Harris算子、SUSAN算子等。
这篇文章主要介绍的Harris角点检测的算法原理,比较著名的角点检测方法还有jianbo Shi和Carlo Tomasi提出的Shi-Tomasi算法,这个算法开始主要是为了解决跟踪问题,用来衡量两幅图像的相似度,我们也可以把它看为Harris算法的改进。OpenCV中已经对它进行了实现,接口函数名为GoodFeaturesToTrack()。另外还有一个著名的角点检测算子即SUSAN算子,SUSAN是Smallest Univalue Segment Assimilating Nucleus(最小核值相似区)的缩写。SUSAN使用一个圆形模板和一个圆的中心点,通过圆中心点像素与模板圆内其他像素值的比较,统计出与圆中心像素近似的像元数量,当这样的像元数量小于某一个阈值时,就被认为是要检测的角点。我觉得可以把SUSAN算子看为Harris算法的一个简化。这个算法原理非常简单,算法效率也高,所以在OpenCV中,它的接口函数名称为:FAST() 。
Part TWO:Harris角点算法理论
人眼对角点的识别通常是在一个局部的小区域或小窗口完成的。如果在各个方向上移动这个特征的小窗口,窗口内区域的灰度发生了较大的变化,那么就认为在窗口内遇到了角点。如果这个特定的窗口在图像各个方向上移动时,窗口内图像的灰度没有发生变化,那么窗口内就不存在角点;如果窗口在某一个方向移动时,窗口内图像的灰度发生了较大的变化,而在另一些方向上没有发生变化,那么,窗口内的图像可能就是一条直线的线段。
对于图像 I(x,y) ,当在点 (x,y) 处平移 (Δx,Δy) 后的自相似性,可以通过自相关函数给出:
其中, W(x,y) 是以点 (x,y) 为中心的窗口, w(u,v) 为加权函数,它既可是常数,也可以是高斯加权函数。
根据泰勒展开,对图像 I(x,y) 在平移 (Δx,Δy) 后进行一阶近似:
其中, Ix,Iy 是图像 I(x,y) 的偏导数,这样的话,自相关函数则可以简化为:
其中
也就是说图像 I(x,y) 在点 (x,y) 处平移 (Δx,Δy) 后的自相关函数可以近似为二项函数:
椭圆函数特征值与图像中的角点、直线(边缘)和平面之间的关系如下图所示。共可分为三种情况:
- 图像中的直线。一个特征值大,另一个特征值小, λ1≫λ2 或 λ2≫λ1 。自相关函数值在某一方向上大,在其他方向上小。
- 图像中的平面。两个特征值都小,且近似相等;自相关函数数值在各个方向上都小。
- 图像中的角点。两个特征值都大,且近似相等,自相关函数在所有方向都增大。
根据二次项函数特征值的计算公式,我们可以求 M(x,y) 矩阵的特征值。但是Harris给出的角点差别方法并不需要计算具体的特征值,而是计算一个角点响应值 R 来判断角点。 R 的计算公式为:
Harris角点算法实现
Harris角点的性质
由此,可以得出这样的结论:增大 α 的值,将减小角点响应值 R ,降低角点检测的灵性,减少被检测角点的数量;减小 α 值,将增大角点响应值 R ,增加角点检测的灵敏性,增加被检测角点的数量。
2. Harris角点检测算子对亮度和对比度的变化不敏感
这是因为在进行Harris角点检测时,使用了微分算子对图像进行微分运算,而微分运算对图像密度的拉升或收缩和对亮度的抬高或下降不敏感。换言之,对亮度和对比度的仿射变换并不改变Harris响应的极值点出现的位置,但是,由于阈值的选择,可能会影响角点检测的数量。
3. Harris角点检测算子具有旋转不变性
Harris角点检测算子使用的是角点附近的区域灰度二阶矩矩阵。而二阶矩矩阵可以表示成一个椭圆,椭圆的长短轴正是二阶矩矩阵特征值平方根的倒数。当特征椭圆转动时,特征值并不发生变化,所以判断角点响应值 R 也不发生变化,由此说明Harris角点检测算子具有旋转不变性。
4. Harris角点检测算子不具有尺度不变性
如下图所示,当右图被缩小时,在检测窗口尺寸不变的前提下,在窗口内所包含图像的内容是完全不同的。左侧的图像可能被检测为边缘或曲线,而右侧的图像则可能被检测为一个角点。
Harris的OpenCV接口
OpenCV的Hairrs角点检测的函数为cornerHairrs(),但是它的输出是一幅浮点值图像,浮点值越高,表明越可能是特征角点,我们需要对图像进行阈值化。
- src – 输入的单通道8-bit或浮点图像。
- dst – 存储着Harris角点响应的图像矩阵,大小与输入图像大小相同,是一个浮点型矩阵。
- blockSize – 邻域大小。
- apertureSize – 扩展的微分算子大。
- k – 响应公式中的,参数 α 。
- boderType – 边界处理的类型。
从上面上间一幅图像我们可以看到,有很多角点都是粘连在一起的,我们下面通过加入非极大值抑制来进一步去除一些粘在一起的角点。
非极大值抑制原理是,在一个窗口内,如果有多个角点则用值最大的那个角点,其他的角点都删除,窗口大小这里我们用3*3,程序中通过图像的膨胀运算来达到检测极大值的目的,因为默认参数的膨胀运算就是用窗口内的最大值替代当前的灰度值。
现在我们得到的效果就比默认的函数得到的结果有相当的改善,如上面最右边效果图。
多尺度Harris角点
1 多尺度Harris角点的原理
虽然Harris角点检测算子具有部分图像灰度变化的不变性和旋转不变性,但它不具有尺度不变性。但是尺度不变性对图像特征来说至关重要。人们在使用肉眼识别物体时,不管物体远近,尺寸的变化都能认识物体,这是因为人的眼睛在辨识物体时具有较强的尺度不变性。在图像特征提取:尺度空间理论这篇文章里就已经讲到了高斯尺度空间的概念。下面将Harris角点检测算子与高斯尺度空间表示相结合,使用Harris角点检测算子具有尺度的不变性。
2 多尺度Harris角点实现
多尺度Harris角点检测C++实现:https://github.com/RonnyYoung/ImageFeatures/blob/master/source/harrisLaplace.cpp
更多的讨论
在上面描述的Harris角点具有光照不变性、旋转不变性、尺度不变性,但是严格意义上来说并不具备仿射不变性。Harris-Affine是一种新颖的检测仿射不变特征点的方法,可以处理明显的仿射变换,包括大尺度变化和明显的视角变化。Harris-Affine主要是依据了以下三个思路:
- 特征点周围的二阶矩的计算对区域进行的归一化,具有仿射不变性;
- 通过在尺度空间上归一化微分的局部极大值求解来精化对应尺度;
- 自适应仿射Harris检测器能够精确定位牲点;
这篇文章不对Harris-Affine作进一步的描述,有时间会对这一算法做专门的分析,有兴趣的可以参考原论文:Scale & Affine Invariant Interest Point Detectors.
该文章参考的一下文章:
[1] 《图像局部不变特征与描述》王永明,王贵锦。
[3] 图像特征提取PPT
[4] Harris角点检测算法 1
[6]点击打开链接