一、 什么是Redis
Redis,英文全称是Remote Dictionary Server(远程字典服务),是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。
- 键值(key-value)型,value支持多种不同的数据结构,功能丰富
- 单线程,每个命令具备原子性
- 低延迟,速度快(基于内存,IO多路复用,良好的编码)
- 支持数据持久化
- 支持主从集群,分片集群
- 支持多语言客户端
与MySQL数据库不同的是,Redis的数据是存在内存中的。它的读写速度非常快,每秒可以处理超过10万次读写操作。因此redis被广泛应用于缓存,另外,Redis也经常用来做分布式锁。除此之外,Redis支持事务、持久化、LUA 脚本、LRU 驱动事件、多种集群方案。
Redis是一种NoSQL的数据库。
SQL | NoSQL | |
---|---|---|
数据结构 | 结构化 | 非结构化 |
数据关联 | 关联的 | 无关联的 |
查询方式 | SQL查询 | 非SQL |
事务特性 | ACID | BASE |
存储方式 | 磁盘 | 内存 |
扩展性 | 垂直 | 水平 |
使用场景 | 1.数据固定2.相关业务对数据安全性一致性要求较高 | 1.数据不固定2.对一致性安全性要求不高3.对性能要求高 |
二、Redis的基本数据结构类型
2.1 五种基本类型
大多数小伙伴都知道,Redis有以下这五种基本类型:
- String(字符串)
- Hash(哈希)
- List(列表)
- Set(集合)
- zset(有序集合)
String(字符串)
简介:String是Redis最基础的数据结构类型,它是二进制安全的,可以存储图片或者序列化的对象,值最大存储为512M
简单使用举例: set key value、get key等
应用场景:共享session、分布式锁,计数器、限流。
内部编码有3种,int(8字节长整型)/embstr(小于等于39字节字符串)/raw(大于39个字节字符串)
C语言的字符串是char[]实现的,而Redis使用SDS(simple dynamic string) 封装,sds源码如下:
struct sdshdr{
unsigned int len; // 标记buf的长度
unsigned int free; //标记buf中未使用的元素个数
char buf[]; // 存放元素的坑
}
SDS 结构图如下:
Redis为什么选择SDS结构,而C语言原生的char[]不香吗?
举例其中一点,SDS中,O(1)时间复杂度,就可以获取字符串长度;而C 字符串,需要遍历整个字符串,时间复杂度为O(n)
Hash(哈希)
简介:在Redis中,哈希类型是指v(值)本身又是一个键值对(k-v)结构
简单使用举例:hset key field value 、hget key field
内部编码:ziplist(压缩列表) 、hashtable(哈希表)
应用场景:缓存用户信息等。
注意点:如果开发使用hgetall,哈希元素比较多的话,可能导致Redis阻塞,可以使用hscan。而如果只是获取部分field,建议使用hmget。
字符串和哈希类型对比如下图:
List(列表)
简介:列表(list)类型是用来存储多个有序的字符串,一个列表最多可以存储2^32-1个元素。
简单实用举例:lpush key value [value …] 、lrange key start end
内部编码:ziplist(压缩列表)、linkedlist(链表)
应用场景:消息队列,文章列表,
一图看懂list类型的插入与弹出:
Set(集合)
简介:集合(set)类型也是用来保存多个的字符串元素,但是不允许重复元素
简单使用举例:sadd key element [element …]、smembers key
内部编码:intset(整数集合)、hashtable(哈希表)
注意点:smembers和lrange、hgetall都属于比较重的命令,如果元素过多存在阻塞Redis的可能性,可以使用sscan来完成。
应用场景:用户标签,生成随机数抽奖、社交需求。
有序集合(zset)
简介:已排序的字符串集合,同时元素不能重复
简单格式举例:zadd key score member [score member …],zrank key member
底层内部编码:ziplist(压缩列表)、skiplist(跳跃表)
应用场景:排行榜,社交需求(如用户点赞)。
2.2 三种特殊的数据结构类型
- Geo:Redis3.2推出的,地理位置定位,用于存储地理位置信息,并对存储的信息进行操作。
- HyperLogLog:用来做基数统计算法的数据结构,如统计网站的UV。
- Bitmaps :用一个比特位来映射某个元素的状态,在Redis中,它的底层是基于字符串类型实现的,可以把bitmaps成作一个以比特位为单位的数组