微积分 - 洛必达法则的四种类型

洛必达法则

考虑如下形式的极限:\lim_{x \to a} \frac{f(x)}{g(x)} 。因为f和g都是可导函数,所以可在x=a点对他们进行线性化有:f(x) \approx f(a) + f'(a)(x-a) 和 g(x) \approx g(a) + g'(a)(x-a)。现在,假设f(a)和g(a)都为0,这说明f(x) \approx f'(a)(x-a)g(x) \approx g'(a)(x-a)。如果f(x)除以g(x),假设x\neq a则有

\frac{f(x)}{g(x)} \approx \frac{f'(a)(x-a)}{g'(a)(x-a)} = \frac{f'(a)}{g'(a)}这就是洛必达法则。

类型A : \lim_{x \to a} \frac{f(x)}{g(x)} : ( 0/0,\pm \infty / \pm \infty)

洛必达法则对于\lim_{x \to a}f(x) = \infty\lim_{x \to a}g(x) = \infty的情况也同样适用。例如求极限

\lim_{x \to \infty }\frac{3x^2+7x}{2x^2-5}。可以注意到当x \to \infty时,分子和分母同时趋于\infty,所以可以使用洛必达法则:\lim_{x \to \infty }\frac{3x^2+7x}{2x^2-5} = \lim_{x \to \infty }\frac{6x+7}{4x} = \lim_{x \to \infty }(\frac{6}{4}+\frac{7}{4x}).可以看出当x \to \infty时,\frac{7}{4x}趋于0,所以极限结果为\frac{6}{4}也就是\frac{3}{2}

类型B : \lim_{x \to a} (f(x)-g(x)) : ( \infty - \infty)

考虑这个极限表达式:\lim_{x \to 0}(\frac{1}{sinx} - \frac{1}{x}) 当x \to 0^+时,\frac{1}{sinx} 和 \frac{1}{x} 都趋于\infty,当x \to 0^-时,\frac{1}{sinx} 和 \frac{1}{x} 都趋于-\infty,无论哪种情况,这都是两个非常大的数的差。

幸运的事可以很容易把这种形式转换成类型A,我们所需要做的仅仅是通分:

\lim_{x \to 0}(\frac{1}{sinx} - \frac{1}{x}) = \lim_{x \to 0}\frac{x-sinx}{xsinx}

现在把x=0代入,可以看出这是0/0型的不定式,所以可以用洛必达法则。

\lim_{x \to 0}(\frac{1}{sinx} - \frac{1}{x}) = \lim_{x \to 0}\frac{x-sinx}{xsinx} = \lim_{x \to 0}\frac{1-cosx}{sinx+xcosx}

把x=0代入后,仍然是是0/0型的不定式,所以继续用洛必达法则。

\lim_{x \to 0}(\frac{1}{sinx} - \frac{1}{x}) = \lim_{x \to 0}\frac{1-cosx}{sinx+xcosx} = \lim_{x \to 0}\frac{sinx}{cosx +cosx-xsinx}

到这里后把x=0代入可以得到分子为0分母为2于是就有:

\lim_{x \to 0}(\frac{1}{sinx} - \frac{1}{x}) = 0

类型B2 : \lim_{x \to a} f(x)\times g(x) : (0 \times \pm \infty)

考虑这个极限表达式:\lim_{x \to 0^+}xlnx 。 因为当x \leqslant 0时,lnx没有意义。所以只需求当x \to 0^+的极限。可以看出,当x \to 0^+时 x \to 0,lnx \to -\infty 。让我们通过处理分母把该极限转换成类型A。

\lim_{x \to 0^+}xlnx = \lim_{x \to 0^+}\frac{lnx}{\frac{1}{x}}

现在为-\infty / \infty行,所以可以使用洛必达法则。

\lim_{x \to 0^+}xlnx = \lim_{x \to 0^+}\frac{lnx}{\frac{1}{x}} = \lim_{x \to 0^+}\frac{\frac{1}{x}}{-\frac{1}{x^2}}

最右边的极限可以化简为-x。所以最后的极限为

\lim_{x \to 0}(-x) = 0

类型C : \lim_{x \to a} f(x) ^ {g(x)} : (1 ^ {\pm \infty}, 0^0,\infty ^0)

最后我们研究最复杂的一种情况:\lim_{x \to 0^+} x^{sinx}。这时候我们设 x=0,那么我们就得到了0^0,这是不定式的另外一种形式,为求得该极限,要使用类似对数函数的求导法则。基本思想是相对x^{sinx}取对数,接下来再求当x \to 0^+时的极限。

\lim_{x \to 0^+} ln(x^{sinx}) = \lim_{x \to 0^+}sinx \times ln(x)

x \to 0^+时,可得sinx \to 0,lnx \to -\infty,所以该题就属于B2,如果把sinx移到分母就有cscx,这时该题就转换成A类型了。这样就可以使用洛必达法则求导:

\lim_{x \to 0^+}sinx \times ln(x) = \lim_{x \to 0^+} \frac{1/x}{-cscxcotx} = \lim_{x \to 0^+}(-\frac{sinx}{x})\times tanx = -1\times 0 = 0

做完了吗?还没有,我们现在知道:\lim_{x \to 0^+} ln(x^{sinx}) = 0,现在对两边同时求指数,可得

\lim_{x \to 0^+} x^{sinx} = e^0 = 1

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 洛必达法则是一种用于求解极限问题的重要的数学工具。在MATLAB中,我们可以使用洛必达法则来计算函数在某一点的极限值。 首先,我们需要确保所要求解的函数在该点处确实存在一个未定型的极限。接下来,我们可以采用以下步骤来应用洛必达法则: 1. 计算函数在该点最高次幂的导数。例如,如果函数为f(x) = (x^2 + 3x + 2)/(x + 1),则最高次幂为x^2,对其求导得到f'(x) = (2x + 3)。 2. 计算该点的函数值和导数值。将该点的x值代入函数和导数表达式中,得到函数值和导数值。例如,如果要计算函数在x=1处的极限,将x=1代入函数和导数表达式中,得到f(1) = (1^2 + 3*1 + 2)/(1 + 1) = 6/2 = 3和f'(1) = 2(1) + 3 = 5。 3. 如果导数值不为0或不存在,继续进行以下步骤;否则,洛必达法则无法应用。在我们的例子中,f'(1) = 5,不为0,我们可以继续进行。 4. 计算函数值和导数值的比值。将函数值和导数值相除,得到比值。例如,在我们的例子中,3/5 = 0.6。 5. 如果比值存在有限数值或无穷大的极限,则该比值即为所要求解的极限。在我们的例子中,比值为0.6,因此,f(x)在x=1处的极限为0.6。 总结来说,洛必达法则是在MATLAB中求解函数在某一点的极限的一种数学方法。通过计算函数和导数的值,并计算它们的比值,我们可以确定函数在该点处的极限。 ### 回答2: 洛必达法则(L'Hôpital's rule)是一个求极限的数学工具,常用于解决一些复杂的极限计算问题。它最早由法国数学家阿尔伯特·吕把克·洛必达(Albert Girard L'Hôpital)在1696年提出,并在洛必达的《解析分析的著名规则》一书中予以证明。 洛必达法则的基本思想是,对于某些形式为0/0或无穷大/无穷大的不定型极限,可以通过导数的比值来进行求解。具体而言,若函数f(x)和g(x)在给定点a处满足以下条件: 1. f(a)=0,g(a)=0或者f(a)=±∞,g(a)=±∞; 2. f'(x)和g'(x)都存在(或者都在a的一个去心邻域内存在); 3. g'(x)在a的去心邻域内不为零, 那么可以通过洛必达法则求得f(x)/g(x)在x趋于a时的极限。具体求解的步骤为: 1. 计算f'(x)和g'(x)分别在a处的值; 2. 计算f'(a)/g'(a); 3. 如果f'(a)/g'(a)存在有限值,则f(x)/g(x)在x趋于a时的极限等于f'(a)/g'(a);如果f'(a)/g'(a)不存在或者为±∞,则洛必达法则不适用。 洛必达法则在Matlab中可以通过符号计算工具箱的diff函数来实现导数的计算,然后通过subs函数进行代入计算。可以通过编写相应的代码来模拟洛必达法则的应用,使得Matlab能够自动求解满足条件的不定型极限。 总之,洛必达法则是一种常用的数学工具,能够帮助我们解决一些不定型的极限计算问题。在Matlab中,可以通过符号计算工具箱的函数来实现这一计算,方便快捷地求解极限。 ### 回答3: 洛必达法则是控制系统理论中的一个重要工具,可以用于分析和设计控制系统的稳定性。洛必达法则基于系统的特征方程,通过判断特征方程的根的位置来确定系统的稳定性。 在MATLAB中,我们可以使用洛必达法则进行稳定性分析的计算和绘图。首先,我们需要将系统的传递函数表示为MATLAB的符号形式。 接下来,使用MATLAB的特征根函数roots来计算特征方程的根。根据洛必达法则的原理,如果特征方程所有根的实部都小于零,那么系统是稳定的。如果存在至少一个根的实部大于等于零,那么系统是不稳定的。 通过使用MATLAB提供的根据特征值计算函数,我们可以很方便地判断系统的稳定性。例如,使用poly函数可以将系统的特征方程的系数转化为特征方程的多项式,然后使用roots函数计算特征根。再通过判断特征根的实部是否小于零,即可判断系统的稳定性。 此外,MATLAB还提供了用于绘制根轨迹的函数rlocus。根轨迹是描述特征方程根在复平面上运动的轨迹,通过绘制根轨迹可以直观地观察系统的稳定性。根据洛必达法则,当系统从不稳定到稳定时,根轨迹会穿过虚轴。 总之,MATLAB提供了多种函数和工具,能够方便地进行洛必达法则的计算和分析。通过使用MATLAB进行洛必达法则的分析,我们可以更好地理解和设计控制系统的稳定性特性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全栈游戏开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值