微积分 - 对数函数与指数函数的导数

指数法则

  1. b^{0} = 1
  2. b^{1} = b
  3. b^{x+y} = b^xb^y
  4. \frac{b^x}{b^y} = b^{x-y}
  5. (b^x)^y = b^{xy}

对数法则

  1. log_{b}(1) = 0
  2. log_{b}(b) =1
  3. log_{b}(xy) = log_{b}(x) + log_{b}(y)
  4. log_{b}(x/y) = log_{b}(x) - log_{b}(y)
  5. log_{b}(x^y) = ylog_{b}(x)
  6. 换底法则:对于任意的底数b>1和c>1以及任意的数x>0有:log_{b}(x) = \frac{log_{c}(x)}{log_{c}(b)}

对数函数和指数函数求导

g(x) = log_{b}(x),那么g的导数是什么?使用导数的定义我们得到:

g'(x) = \lim_{h\rightarrow 0}\frac{g(x+h)-g(x)}{h} = \lim_{h\rightarrow 0}\frac{log_{b}(x+h)-log_{b}(x)}{h}

我们如何来简化这个杂乱的公式呢?当然是使用对数法则了,首先利用对数法则4将对数的差简化成对数的商:

g'(x) = \lim_{h\rightarrow 0}\frac{log_{b}(x+h)-log_{b}(x)}{h} = \lim_{h\rightarrow 0}\frac{1}{h}log_{b}\frac{x+h}{x}

再利用对数法则5将因子1/h提至指数位置:

g'(x) = \lim_{h\rightarrow 0}\frac{1}{h}log_{b}\frac{x+h}{x} = \lim_{h\rightarrow 0}log_{b}(1+\frac{h}{x}) ^{\frac{1}{h}}

现在让我们先忽略log_{b},当h趋于0时会怎么样?也就是说:\lim_{h \to 0}(1+\frac{h}{x})^{\frac{1}{h}}

根据e的定义那章的内容(没看过的可以去找)我们可以推导出:\lim_{h \to 0}(1+\frac{h}{x})^{\frac{1}{h}} = e^{\frac{1}{x}}

所以带入到原本的公式可以得到:g'(x) = \lim_{h\rightarrow 0}log_{b}(1+\frac{h}{x}) ^{\frac{1}{h}} = log_{b}(e^{\frac{1}{x}}) = \frac{1}{x}log_{b}e

假设令b = e 则有: g'(x) = \frac{1}{x}log_{e}e = \frac{1}{x}

由此我们也知道了log_ex的倒数就是 \frac{1}{x}也即 \frac{d}{dx} ln(x) = \frac{1}{x},这也正是为什么以e为底的对数被称为自然对数的原因之一了。

等等我们是不是还没有解答原本的问题那?

不急这就出来了,根据对数法则6的换底法则有: log_{b}(x) = \frac{log_{e}(x)}{log_{e}(b)} = \frac{log_{e}(x)}{ln(b)}

于是有: \frac{d}{dx}log_{b}(x) = \frac{1}{xlnb}

看到这里问题已经解决了,但这只是对数函数的导数,那吴彦祖可能就要问了:那指数函数的导数那?

现在看看这个:如果 y = b^x,那么我们知道 x = log_{b}(y)。现在对其关于y求导,使用上述公式并用y替代x,得到:\frac{dx}{dy} = \frac{1}{yln(b)},上下颠倒后:\frac{dy}{dx} = yln(b).

由于y = b^x,我们就得到了指数函数的一般求导公式:\frac{d}{dx}(b^x) = b^xln(b)

这下各位吴彦祖就满意了吧,但是还没完,接下来的定理才是本篇文章的核心。

当b = e那: \frac{d}{dx}(e^x) = e^xln(e) = e^x 且无论e^x的几阶倒数都是一样的。

优雅吧!那下篇文章见。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想做后端的前端

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值