强化学习算法

深度强化学习算法:Q-learning,SARSA,DQN,DDPG,PPO与TRPO比较
本文详细介绍了Q-learning、SARSA、DQN、DDPG、PPO和TRPO等强化学习算法,包括它们的核心步骤、策略选择、更新机制以及各自在连续和离线学习环境中的应用。着重讨论了策略梯度方法和信任区域概念在TRPO中的应用,以及PPO如何平衡策略改进的稳定性和性能提升。

1.Q-learning:

Q-learning算法的主要步骤如下:

  1. 初始化Q值表格(Q-table):创建一个二维数组,其中行表示状态,列表示动作,初始值可以为零或者随机值。

  2. 选择动作(Action Selection):根据当前状态(State),使用某种策略来选择动作(Action)。常见的策略有 ε-greedy 策略,即以 ε 的概率随机选择动作,以 1-ε 的概率选择具有最大Q值的动作。

  3. 执行动作(Action Execution):根据选择的动作,让智能体执行该动作,从当前状态转移到下一个状态,并获取环境的反馈,包括奖励(Reward)和下一个状态(Next State)。

  4. 更新Q值(Update Q-values):根据当前状态、执行的动作、获得的奖励以及下一个状态,使用Q-learning更新公式更新Q值表格中对应的Q值: 

  5. 迭代训练(Iterative Training):重复执行上述步骤,直到达到预设的停止条件,比如达到最大迭代次数、Q值收敛、或者达到一定的性能要求。

  6. 策略提取(Policy Extraction):在训练完成后,基于学习到的Q值表格,可以通过选择具有最大Q值的动作作为最优策略,用于在实际应用中做出动作选择。

  7. 测试和评估(Testing and Evaluation):使用学习到的最优策略对环境进行测试和评估,评估其在真实环境中的性能。

Q-learning算法的核心思想是通过不断地尝试和反馈来学习最优策略,使得智能体在环境中能够获得最大的长期奖励。

2.Sarsa

SARSA(State-Action-Reward-State-Action)算法是一种基于状态-动作对的强化学习算法,它与Q-learning类似,但在更新Q值时采用了更加贴近实际的策略。具体步骤如下:

  1. 初始化Q值表格(Q-table)

    创建一个二维数组,其中行表示状态,列表示动作,初始值可以为零或者随机值。
  2. 选择动作(Action Selection)

    根据当前状态(State),使用某种策略来选择动作(Action)。常见的策略有 ε-greedy 策略,即以 ε 的概率随机选择动作,以 1-ε 的概率选择具有最大Q值的动作。
  3. 执行动作(Action Execution)

    根据选择的动作,让智能体执行该动作,从当前状态转移到下一个状态,并获取环境的反馈,包括奖励(Reward)和下一个状态(Next State)。
  4. 选择下一个动作(Select Next Action)

    在下一个状态,根据当前策略再次选择动作。这里需要注意,与Q-learning不同的是,SARSA算法会根据当前策略在下一个状态选择动作,而不是直接选
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值