在很多书上都看到这个算法问题:
给定一个十进制正整数N, 写下从1开始,到N的所有整数,然后数一下其中出现所有“1”的个数,即求f(N)。
例如:
N=2, 写下1,2,。 出现1个1;
N=13, 我们写下:1,2,3,4,5,6,7,8,9,10,11,12,13,出现1个的个数是6.
求解f(N)=N 的最大值?
问题分解:
1. 首先求解函数f(N),即饭后1 到N之间出现的 1 的个数,如f(13)=6
2 在求满足条件的 f(N)=N 的最大值?
下面是一种求解方法:
#include<stdlib.h>
#include<iostream>
using namespace std;
int f(int n);
int count1(int n);
int cal(unsigned int number, int nwei, int count1,unsigned int ncount);
int gTable[10];
const unsigned int gMAX = 4000000000L;
int main(int argc, char * argv[])
{
int i;
unsigned int n=1;
unsigned int ncount = 0;
int nwei = 0;
int ncount1;
for(i=0;i<10;++i)
{
n*=10;
gTable[i]=f(n-1);
}
n=0;
nwei=0;
ncount1=0;
while(n<gMAX)
{
unsigned int temp;
temp = 1;
ncount =cal(n,nwei, ncount1, ncount);
for(i=0;i<nwei;++i)
temp*=10;
n+=temp;
if((n/temp)/10==1) ++nwei;
ncount1=count1(n);
}
return 0;
}
/* */
int f(int n)
{
int ret = 0;
int ntemp=n;
int ntemp2=1;
int i=1;
while(ntemp)
{
ret +=(((ntemp-1)/10)+1)*i;
if((ntemp%10)==1)
{
ret ==i;
ret+=ntemp2;
}
ntemp=ntemp/10;
i*=10;
ntemp2 = n%i+1;
}
return ret;
}
/* */
int count1(int n)
{
int count=0;
while(n)
{
if((n%10)==1)
++count;
n/=10;
}
return count;
}
/* */
int cal(unsigned int number, int nwei, int count1,unsigned int ncount)
{
int i,n=1;
unsigned int maxcount;
if(nwei ==0)
{
ncount+=count1;
if(number == ncount)
{
printf("f(%d) = %d\n", number, number);
}
return ncount;
}
for(i=0;i<nwei;++i)
n*=10;
maxcount=ncount+gTable[nwei-1];
maxcount+=count1*n;
if(ncount>(number+(n-1)))
{return maxcount;}
if(maxcount < number)
{
return maxcount;
}
n/=10;
for(i=0;i<10;++i)
{
if(i==1)
ncount=cal(number+i*n,nwei-1,count1+1,ncount);
else
ncount=cal(number+i*n,nwei-1,count1,ncount);
}
return ncount;
}