<<AI入门(4)>>(C)

  我们讲一讲A*算法: 我们描述一个特别的估价函数f(n),它能估算出从起始节点到n最小代价路径的代价和节点n到一目标节点的最小代价路径的代价总和. 我们在介绍A*算法之前先介绍一些有用的记号: k(n,m)表示从节点n到m的之间的最小代价路径的代价,m和n必须是连通的. h*(n)表示n到整个目标节点集合的所有最小代价路径中最小的一个,也就是说h*(n)是n到目标节点的最小代价.我们定义g*(n)=k(S,n)表示从开始到节点n的最小代价的路径的代价.设f*(n)=g*(n)+h*(n)表示从开始节点通过节点n到目标节点的最小代价路径的代价. 我们的估价函数f(n)=g(n)+h(n)是f*(n)的一个估计.其中h是h*的估计,g是g*的估计.h有赖于启发的信息,我们称h为启发函数. 下面我们就来讲讲A*算法: 1.把S放入OPEN表中,记f=h,令CLOSED为空表. 2.若OPEN表为空,失败退出. 3.在OPEN表中选取有最小f值的节点为best,并将它放入CLOSED表. 4.若best节点是目标节点,则成功退出. 5.best节点不是目标节点,则把best节点扩展,产生后续节点children. 6.对于每个children进行如下的操作: a..建立值相父节点的指针 b..计算g(children)=g(best)+g(best,children) c..如果children在OPEN表中,比较新旧路径,如果小于就把原来节点的父节点改为best并用新的代价取代原来的代价. d..如果节点在CLOSED表中,转向c e..如果节点即不在OPEN表中也不在CLOSED表中,则加入表OPEN中. 7.计算f值 8.GOTO 2 我们没有详细讨论A*算法的性质,有问题欢迎来信&amp;lt;A href="mailto:sevecol@163.net"&amp;gt;sevecol@163.net&amp;lt;/A&amp;gt; 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
TensorFlow是一个开源的人工智能框架,由Google公司开发,用于构建和训练机器学习模型。TensorFlow提供了各种各样的API和工具,使得开发人员能够轻松地构建、测试和优化自定义的深度学习算法。 以下是一个简单的TensorFlow入门教程: 1. 安装TensorFlow 首先,您需要安装TensorFlow。可以使用pip或conda进行安装。以下是pip安装的示例: ``` pip install tensorflow ``` 2. 导入TensorFlow 在Python代码中,您需要导入TensorFlow库,如下所示: ``` import tensorflow as tf ``` 3. 定义计算图 在TensorFlow中,您需要定义一个计算图来执行操作。计算图是一系列操作和数据流的集合。以下是一个简单的计算图: ``` a = tf.constant(5) b = tf.constant(2) c = tf.multiply(a, b) ``` 在上面的代码中,我们定义了两个常量a和b,并将它们相乘,结果存储在变量c中。 4. 运行计算图 要运行计算图,您需要使用TensorFlow会话。会话是一个TensorFlow运行环境,它负责计算图的执行。以下是一个简单的会话: ``` with tf.Session() as sess: result = sess.run(c) print(result) ``` 在上面的代码中,我们创建了一个会话,并运行了计算图。结果将打印为10,因为5乘以2等于10。 5. 优化计算图 在TensorFlow中,您可以优化计算图以提高性能。以下是一个简单的优化示例: ``` a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) c = tf.multiply(a, b) ``` 在上面的代码中,我们使用了占位符来定义a和b。占位符是一个特殊的节点,它允许您将数据传递到计算图中,而不是在计算图中定义它们。 6. 训练模型 TensorFlow还提供了各种各样的工具和API,使得训练机器学习模型变得容易。以下是一个简单的训练示例: ``` x_data = [1, 2, 3, 4, 5] y_data = [5, 8, 11, 14, 17] w = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = w * x_data + b loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.1) train = optimizer.minimize(loss) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for i in range(1000): sess.run(train) if i % 100 == 0: print(i, sess.run(w), sess.run(b)) print(sess.run(w), sess.run(b)) ``` 在上面的代码中,我们定义了一个线性回归模型,并使用梯度下降优化器来训练它。在训练过程中,我们将权重和偏置打印到控制台,以便我们可以观察到它们如何变化。在训练完成后,我们将打印最终权重和偏置。 这只是TensorFlow的一个简单入门教程。TensorFlow提供了各种各样的API和工具,以满足各种不同的机器学习和深度学习需求。如果您想深入了解TensorFlow,请参阅官方文档和示例代码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蝈蝈俊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值