YOLO-LITE项目实现(比SSD和MobileNet更快的算法)

YOLO-LITE

论文:Yolo-lite paper

项目:Yolo-lite

不懂原理的可以看我的这篇博客:YOLO-LITE原理

YOLO-LITE是YOLOv2的网络实施 - 在MS COCO 2014和PASCAL VOC 2007 + 2012上接受过微小训练。在开发YOLO-LITE时使用的所有训练模型(cfg和权重文件)都在这里。我们的目标是创建一个架构,可以在没有GPU的计算机上以10 FPS的速度进行实时物体检测,平均精度约为30%

Demo

https://reu2018dl.github.io/#examples  可以直接在浏览器中进行实时的目标检测,有COCO和VOC训练模型.

Results

DataSet mAP FPS
PASCAL VOC 33.57 21
COCO 12.26 21

best PASCAL cfg | 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值