傅里叶变换历史
傅里叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。
拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅里叶是对的。
用正弦曲线来代替原来的曲线而不用方波或三角波来表示的原因在于,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示
天才在左 疯子在右
由于傅里叶极度痴迷热学,他认为热能包治百病,于是在一个夏天,他关上了家中的门窗,穿上厚厚的衣服,坐在火炉边,结果因CO中毒不幸身亡,1830年5月16日卒于法国巴黎。
多项式
一个以x为变量的多项式定义在一个代数域F上,将函数A(x)表示为形式和:
次数界
如果一个多项式的最高次的非零系数是,则称的次数是k,记 degree(A) = k。 任何严格大于一个多项式次数的整数都是该多项式的次数界
多项式加法
如果和是次数界为n的多项式,那么它们的和也是一个次数界为n的多项式
多项式乘法
如果和是次数界为n的多项式,它们的乘积是一个次数界为2n-1的多项式
多项式的表示
系数表达
一个次数界为n的多项式 而言,其系数表达是一个由系数组成的向量
霍纳法则
时间复杂度内计算
卷积(convolution)
,
系数向量c称为输入向量a和b的卷积
点值表达
一个次数界为n的多项式A(x)的点值表达就是一个由n个点值对所组成的集合
使得对 k = 0, 1, 2, ... , n-1, 所有各不相同,
插值
从一个多项式的点值表达确定其系数表达形式
插值多项式的唯一性
对于任意n个点值对组成的集合,其中所有的都不同;那么存在唯一的次数界为n的多项式,满足