极限建模方法

极限建模方法

王巍

(本文转载自软件工程专家网www.21cmm.com

  极限编程(Extreme Programming,XP)简单地讲是一些相互关联的准则和惯例的集合,其中一些关注的是基本的活动,比如配置管理,但其中大多数关注的是团队成员之间以及团队与应用系统的企业团体之间的交流通信和文化方面的相关问题。XP建议采用循环迭代开发方法。

  建模是软件开发中的一个重要组成部分,一个模型描述的是软件的某个方面的完整内容。通过建模能简化软件和软件过程。往往一个图形能抵得上数十行字,甚至是数百行文字的描述。通过图形这一中介媒体,你可以迅速地得到反馈信息,并能及时地修改你的模型以满足用户的需求。极限建模(Extreme Modeling,XM)是建立在已有的且被证明是有效的建模方法之上的轻量级建模方法。XM是XP的基础。

  在开发一个面向对象软件的过程中,软件开发人员可能会应用到的基本的建模工具和建模过程见下图所示。为了简单起见,图中所示省略了项目管理方面的内容,比如测试用例等评估测试工具内容。图中的方块表示的是可能会用到的诸如基本的用例模型和活动图等之类的开发工具。图中的线条则描述的是各工具间的主要关系,比如:分析阶段的类模型所包含的信息将影响到设计阶段的类模型中的信息的开发。这些关系揭示了不同工具在迭代开发过程中的相互影响关系。比如:当你修正用例模型时,它可能会影响到顺序图的开发,接着就会影响到你的类模

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 极限学习机(Extreme Learning Machine)算法是一种快速高效的神经网络结构,其独特之处在于随机初始化隐层神经元的连接权重和阈值,不需要进行反向传播算法进行迭代。同时,极限学习机算法具有较强的泛化能力和较小的过拟合风险,可以适用于各种不同的机器学习任务。 在MATLAB中,用户可以使用ELMtoolbox工具箱来实现极限学习机算法。使用该工具箱,用户可以方便地进行数据预处理、网络建模和精度评估等操作。同时,ELMtoolbox还提供了多种激活函数和优化算法供用户选择,可以根据实际情况进行自由配置和调整。 在使用极限学习机算法时,用户需要注意几点。首先,应该根据实际研究问题选择恰当的数据预处理方法,如归一化、标准化等。其次,需要根据数据集的大小和特征数合理选择隐层神经元的数量。最后,用户也应该注意防止过拟合现象的发生,选择恰当的正则化手段和交叉验证等方法。 总之,极限学习机算法是一种快速高效、易于实现和具有广泛适用性的机器学习算法,在MATLAB中得到了良好的支持和应用。通过合理配置和调整,用户可以充分利用该算法的优势,取得满意的研究成果。 ### 回答2: 极限学习机算法(matlab)是一种快速学习算法,它能够自适应地调整模型参数,快速又精确地训练模型。极限学习机算法以单层神经网络为基础,其设计目的是加快学习速度,简化模型结构,减少过拟合的发生。同时,该算法的实现过程简单,只需要对随机初始化的输入权值和偏置进行优化,同时降低了对数据集大小、分布及目标数据的先验知识的依赖性。 在matlab中,使用极限学习机算法可以快速训练模型,同时也可以通过算法调优,进一步提升模型的精度与性能。对于大规模数据集的处理,极限学习机算法的效率也具有明显优势。在实现过程中,需要按照一定的流程进行数据预处理、构建模型、调整参数等步骤,同时也需要根据具体需求选择适合的训练算法和优化器。 总的来说,极限学习机算法(matlab)是一种快速、高效、精准的学习算法,在数据挖掘、机器学习等领域得到了广泛应用。同时,matlab作为一种强大的数学工具,为算法的实现提供了便捷的支持和丰富的工具包,能够更好地满足实际应用的需求,提高模型预测的准确性。 ### 回答3: 极限学习机(Extreme Learning Machine,ELM)算法是一种机器学习算法,它采用单层前向人工神经网络(SLFN)作为模型,其目标是实现高效、快速的学习和分类。 在ELM算法中,随机选择一些权重和偏置值来初始化神经网络;接着,通过激活函数计算每个隐层节点的输出值;最后,将输出层连接到隐层的权重进行训练,得到最终的分类结果。 相比传统的人工神经网络算法,ELM算法具有训练速度快、学习效果好、模型拥有更少的超参数等优点。另外,在处理大规模数据集时,ELM算法的计算效率也非常高,因此在实际应用中得到了广泛的应用。 MATLAB是一种面向科学计算和工程设计的高级语言和交互式环境,它提供了许多工具箱和函数,方便用户实现各种算法和模型。在ELM算法中,MATLAB也提供了相关工具箱,使用户可以快速实现ELM算法并优化计算结果。 总之,ELM算法是一种具有广泛应用价值的机器学习算法,而MATLAB则提供了方便的工具箱和函数库,使得用户可以更加便捷地实现训练、测试和优化等过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gigix

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值