Viva:Open Java的Source

众所周知,Java语言本身并不是Open Source的。现在,Open Source社群创办了一个网站——http://viva.sourceforge.net——专门从事Open Source的Java语言实现。这对于Java的推广和发展将大有帮助。

请记住,Java不等于Sun。虽然“太阳”下没有新鲜事,但咖啡却可以每天都是新的。

——————————

Viva - a site dedicated to open source Java - is now live.

Viva aims to give you a quick overview of the state of open source Java and uncover and clarify Sun's open source Java stand.

For now the Viva site includes:

* a directory listing open source Java runtimes, compilers, core libraries, test suites, FAQs, UI toolkits and more

* another directory listing dozens of open source Java runtimes from the research community

* a link directory about open source basics and about Sun's official open source PR propaganda

* a call to action to pressure Sun to open source the Java core and to help secure the future of Java as an open royality-free standard

* more to come

Full story @ http://viva.sourceforge.net

Comments? Suggestions?
阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
VIVA信号灯数据集是一个专门用于训练和评估交通信号灯识别算法的数据集。该数据集包含了大量真实场景中的交通信号灯图像和对应的标签信息。这些图像覆盖了不同时间、天气、路况和拍摄角度等多个因素,能够有效模拟真实道路环境中的各种场景。 VIVA信号灯数据集对于交通信号灯识别算法的研究非常重要。它可以帮助算法模型对不同的信号灯状态进行准确的识别,包括红灯、绿灯、黄灯以及无信号灯的情况。通过对这些图像进行标注,可以为算法提供丰富多样的样本,提升算法在实际场景中的鲁棒性。 使用VIVA信号灯数据集,研究人员可以开展各种交通信号灯识别算法的研究工作。他们可以使用深度学习算法提取图像特征,并建立模型对信号灯状态进行分类。同时,还可以使用数据集中的图像进行模型的训练和调优,提高算法在不同场景下的性能。 此外,VIVA信号灯数据集还可以帮助评估各种交通信号灯识别算法的性能。研究人员可以使用该数据集进行算法的准确度、召回率等性能指标的评测。通过和其他算法进行比较,可以确定算法的优势和不足之处,对算法进行改进和优化。 总之,VIVA信号灯数据集是一个重要的研究资源,对于交通信号灯识别算法的发展和优化具有重要意义,有助于提升道路交通系统的安全性和效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gigix

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值