14、深度强化学习与网络安全应用解析

深度强化学习与网络安全应用解析

1. 深度强化学习基础

深度强化学习(DRL)在近年来取得了显著的进展,然而在实际应用中仍面临一些挑战。

1.1 奖励函数设计

在某些场景下,奖励函数的设计十分关键。例如在车辆行驶场景中,奖励函数 $r_t$ 设计如下:
[
r_t =
\begin{cases}
(v_t \cos(\alpha) - \text{dist}(t) {\text{center}})\beta, & \text{if no collision}\
\gamma, & \text{if collision}
\end{cases}
]
其中,$v_t$ 是时间步 $t$ 时车辆的速度(单位:m/s),$\alpha$ 是车辆速度与轨道切线的夹角,$\text{dist}(t)
{\text{center}}$ 是车辆中心与轨道中间的距离,$\beta$ 和 $\gamma$ 是在训练开始时确定的常数。通过这样的奖励函数,结合 12 个异步线程和 RMSProp 优化器进行训练,基于 A3C 训练的驾驶策略能较好地适应复杂的现实场景。

1.2 深度学习到强化学习模型

当马尔可夫决策过程(MDP)模型的状态和奖励转移概率已知时,可直接根据基于模型的强化学习算法获得最优策略。若环境未知或无模型,智能体可先学习模型再寻找最优策略。在学习模型过程中,若状态空间连续或过大,可使用深度神经网络(DNN)近似转移概率,并定义目标函数来优化 DNN 中的参数或权重。

然而,基于模型的 DRL 面临诸多挑

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化训练,到执行分类及结果优化的完整流程,并介绍了精度评价通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置结果后处理环节,充分利用ENVI Modeler进行自动化建模参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值