wbstats: 使用R语言轻松获取世界银行数据指南
项目介绍
wbstats 是一个专为R语言设计的包,它简化了从世界银行API搜索并下载数据的过程。这个开源工具允许数据分析人员和研究人员以高效的方式获取全球经济发展指标,从而促进基于准确数据的研究和决策。wbstats支持动态查询,使得获取如人口总量、人均GDP等关键统计数据变得简单直接。
项目快速启动
安装wbstats
在R环境中,通过以下命令安装wbstats包:
# 从CRAN安装稳定版本
install.packages("wbstats")
# 或者,从GitHub安装最新开发版
remotes::install_github("gshs-ornl/wbstats")
获取首个数据集
安装完成后,你可以立即开始获取数据。例如,获取自1960年至今每个国家的人口数据:
library(wbstats)
population_data <- wb_data("SP.POP.TOTL")
head(population_data)
这将返回一个包含指定国家代码、日期、人口总数等字段的数据框。
应用案例与最佳实践
模拟“Gapminder”式可视化
通过wbstats,我们可以重现著名统计学家汉斯·罗斯林(Hans Rosling)风格的数据可视化。示例展示全球各国在特定年份的生命期望和人均GDP的关系,以及人口规模对视觉效果的影响:
library(tidyverse)
my_indicators <- c(
life_exp = "SP.DYN.LE00.IN",
gdp_capita = "NY.GDP.PCAP.CD",
pop = "SP.POP.TOTL"
)
wb_data(my_indicators, start_date = 2016) %>%
left_join(wb_countries(), by = "iso3c") %>%
ggplot() +
geom_point(aes(x = gdp_capita, y = life_exp, size = pop, color = region)) +
scale_x_continuous(labels = scales::dollar_format()) +
coord_trans(x = 'log10') +
scale_size_continuous(labels = scales::number_format(scale = 1/1e6, suffix = "m")) +
theme_minimal() +
labs(
title = "使用wbstats再现Hans Rosling的Gapminder",
x = "人均GDP(对数刻度)",
y = "出生时预期寿命",
size = "人口",
caption = "数据来源:世界银行"
)
典型生态项目
wbstats因其简洁性和对世界银行数据的强大访问能力,成为众多数据科学项目中的重要组件。在生态领域,结合其他R包(如rnaturalearth
进行地理可视化),可以分析特定经济指标(如自我就业率)在不同国家的分布情况:
library(rnaturalearth)
ne_countries(returnclass = "sf") %>%
left_join(
wb_data(c(self_employed = "SL.EMP.SELF.ZS"), mrnev = 1),
by = c("iso_a3" = "iso3c")
) %>%
filter(!iso_a3 == "ATA") %>% # 排除南极洲
ggplot(aes(fill = self_employed)) +
geom_sf() +
scale_fill_viridis_c(labels = scales::percent_format(scale = 1)) +
theme(legend.position = "bottom") +
labs(title = "各国自我就业率", fill = "")
此例子展示了如何利用wbstats获取的数据进行地理空间分析,为政策制定者提供直观的信息展现。
以上指南提供了快速上手wbstats包的基本步骤,以及一些实用的应用案例,帮助你高效地利用世界银行的数据进行研究和分析。