wbstats: 使用R语言轻松获取世界银行数据指南

wbstats: 使用R语言轻松获取世界银行数据指南

wbstats wbstats: An R package for searching and downloading data from the World Bank API wbstats 项目地址: https://gitcode.com/gh_mirrors/wb/wbstats


项目介绍

wbstats 是一个专为R语言设计的包,它简化了从世界银行API搜索并下载数据的过程。这个开源工具允许数据分析人员和研究人员以高效的方式获取全球经济发展指标,从而促进基于准确数据的研究和决策。wbstats支持动态查询,使得获取如人口总量、人均GDP等关键统计数据变得简单直接。

项目快速启动

安装wbstats

在R环境中,通过以下命令安装wbstats包:

# 从CRAN安装稳定版本
install.packages("wbstats")

# 或者,从GitHub安装最新开发版
remotes::install_github("gshs-ornl/wbstats")

获取首个数据集

安装完成后,你可以立即开始获取数据。例如,获取自1960年至今每个国家的人口数据:

library(wbstats)
population_data <- wb_data("SP.POP.TOTL")
head(population_data)

这将返回一个包含指定国家代码、日期、人口总数等字段的数据框。

应用案例与最佳实践

模拟“Gapminder”式可视化

通过wbstats,我们可以重现著名统计学家汉斯·罗斯林(Hans Rosling)风格的数据可视化。示例展示全球各国在特定年份的生命期望和人均GDP的关系,以及人口规模对视觉效果的影响:

library(tidyverse)
my_indicators <- c(
  life_exp = "SP.DYN.LE00.IN",
  gdp_capita = "NY.GDP.PCAP.CD",
  pop = "SP.POP.TOTL"
)

wb_data(my_indicators, start_date = 2016) %>%
  left_join(wb_countries(), by = "iso3c") %>%
  ggplot() +
  geom_point(aes(x = gdp_capita, y = life_exp, size = pop, color = region)) +
  scale_x_continuous(labels = scales::dollar_format()) +
  coord_trans(x = 'log10') +
  scale_size_continuous(labels = scales::number_format(scale = 1/1e6, suffix = "m")) +
  theme_minimal() +
  labs(
    title = "使用wbstats再现Hans Rosling的Gapminder",
    x = "人均GDP(对数刻度)",
    y = "出生时预期寿命",
    size = "人口",
    caption = "数据来源:世界银行"
  )

典型生态项目

wbstats因其简洁性和对世界银行数据的强大访问能力,成为众多数据科学项目中的重要组件。在生态领域,结合其他R包(如rnaturalearth进行地理可视化),可以分析特定经济指标(如自我就业率)在不同国家的分布情况:

library(rnaturalearth)
ne_countries(returnclass = "sf") %>%
  left_join(
    wb_data(c(self_employed = "SL.EMP.SELF.ZS"), mrnev = 1),
    by = c("iso_a3" = "iso3c")
  ) %>%
  filter(!iso_a3 == "ATA") %>% # 排除南极洲
  ggplot(aes(fill = self_employed)) +
  geom_sf() +
  scale_fill_viridis_c(labels = scales::percent_format(scale = 1)) +
  theme(legend.position = "bottom") +
  labs(title = "各国自我就业率", fill = "")

此例子展示了如何利用wbstats获取的数据进行地理空间分析,为政策制定者提供直观的信息展现。


以上指南提供了快速上手wbstats包的基本步骤,以及一些实用的应用案例,帮助你高效地利用世界银行的数据进行研究和分析。

wbstats wbstats: An R package for searching and downloading data from the World Bank API wbstats 项目地址: https://gitcode.com/gh_mirrors/wb/wbstats

电力系统潮流计算是电力工程领域的一项核心技术,主要用于分析电力网络在稳态运行条件下的电压、电流、功率分布等运行状态。MATLAB凭借其强大的数值计算功能和便捷的编程环境,成为电力系统潮流计算的重要工具,它提供了丰富的数学函数库,能够高效地处理复杂的电力系统计算任务。 本压缩包中的“潮流计算MATLAB程序”是一套完整的电力系统潮流计算解决方案,主要包括以下几个关键部分: 数据输入模块:该模块负责读取电力系统的网络数据,包括发电机、线路、变压器等设备的参数。这些数据通常来源于IEEE测试系统或实际电网,并以特定格式存储。 网络建模:基于输入数据,程序构建电力系统的数学模型,主要涉及节点功率平衡方程的建立。每个节点的注入功率等于其消耗功率,对于发电机节点还需考虑其有功和无功功率的调节能力。 迭代算法:潮流计算的核心是求解非线性方程组,常见的算法有牛顿-拉夫森法和高斯-塞德尔法。MATLAB的优化工具箱可辅助实现这些算法,通过迭代更新节点电压和支路电流,直至满足收敛条件。 结果输出:计算完成后,程序能够输出关键性能指标,如节点电压幅值和相角、支路功率流、发电机的有功无功功率等。这些信息对于分析电网运行状态和制定调度策略具有重要意义。 可视化功能:程序可能包含图形用户界面(GUI),用于展示计算结果,例如绘制网络拓扑图并标注节点电压和支路功率,便于用户直观理解计算结果。 错误处理与调试:良好的程序设计应包含错误检测和处理机制,以应对不合理数据或计算过程中出现的问题,并给出适当的提示。 对于电力系统分析课程的学生来说,这个MATLAB程序是一个宝贵的学习资源。它不仅有助于学生掌握电力系统的理论知识,还能让他们了解如何将理论应用于实践,通过MATLAB解决实际问题。尽管该程序是作者一周内完成的,可能存在一些未完善之处,但使用者可以在参考的基础上逐步改进和完善,使其更贴合自身需求。 总之
《全统计:CMU课程1-10章课后答案详解》是一份极具价值的学习资料,专为卡内基梅隆大学(CMU)“全统计”课程的前10章课后习题提供详尽的解题指导。该压缩包内含10个PDF文件,每个文件对应一章的详细解答,目的是助力学生深刻领会统计学的基础知识、核心理论与实际应用。 在第一章中,通常会讲解统计学的基本概念,例如样本与总体、参数估计、概率分布等。答案详解会涵盖如何计算平均值、中位数、众数,以及如何分析这些统计量之间的差异。同时,还会介绍随机变量和概率分布,如二项分布、正态分布等内容。 第二章主要涉及抽样分布理论,包括中心极限定理,这是统计推断的关键基础。答案详解会说明如何借助抽样分布开展假设检验,例如t检验和z检验。 第三章则深入探讨置信区间的构建以及假设检验的方法。答案详解会详细阐述如何确定置信水平,以及在不同情境下如何选择单尾或双尾检验。 第四章通常聚焦于线性回归模型,包括回归方程的建立、残差分析以及多重共线性问题。答案详解会展示如何解读回归系数,预测未知变量,并解释相关性的强度和方向。 第五章可能探讨非参数统计方法,这些方法不依赖于特定的分布假设,例如Kolmogorov-Smirnov检验、Mann-Whitney U检验等。答案详解会解释在数据分布未知时如何开展统计分析。 第六章将涉及单因素和多因素方差分析(ANOVA),用于比较不同组间的均值差异。答案详解会详细说明如何执行ANOVA,解释F统计量及其意义。 第七章可能涵盖实验设计的基本原则,包括随机化、复制和控制。答案详解会说明如何设计有效的实验以减少偏差,以及如何分析实验结果。 第八章可能涉及时间序列数据的特性,如趋势、季节性和周期性。答案详解会介绍ARIMA模型、自回归移动平均模型等,并解释如何预测未来趋势。 第九章可能深入到多元统计领域,包括多元线性回归、主成分分析、因子分析等。答案详解会介绍如何处理多维
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

司莹嫣Maude

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值