推荐开源项目:HouseDiffusion —— 未来家居设计的创新工具
去发现同类优质开源项目:https://gitcode.com/
项目介绍
欢迎关注 HouseDiffusion,这是一个开创性的开源项目,它利用扩散模型(Diffusion Model)进行向量式室内平面图生成。由Shabani, Mohammad Amin、Hosseini, Sepidehsadat和Furukawa, Yasutaka共同研发,这个项目旨在通过连续和离散的去噪过程,创建逼真的家居布局设计。如果你是建筑设计师或对AI生成艺术感兴趣,这个项目绝对不容错过。
项目技术分析
HouseDiffusion 基于Guided-Diffusion,并对其进行了扩展与优化。该项目使用一种独特的扩散模型,可以处理混合数据类型,包括离散和连续的数据。训练过程中,系统学习如何逐步去除随机噪声,恢复原始的、清晰的室内平面图。由于其基础架构,HouseDiffusion 能够生成高质量的设计,同时保持了向量化的优点,使得结果易于编辑和调整。
项目及技术应用场景
- 建筑设计:建筑师和室内设计师可以通过HouseDiffusion快速生成多种设计方案,以供客户选择或作为初步设计的基础。
- 教育研究:在计算机视觉和机器学习领域,这个项目为研究如何处理混合型数据提供了实例和平台。
- 智能家居:结合物联网数据,HouseDiffusion可以生成符合实际居住需求的智能空间布局。
- 娱乐创新:普通用户也可以借此工具自定义和构建理想的虚拟家庭环境。
项目特点
- 高级生成能力:通过连续和离散的去噪过程,生成的平面图既真实又多样。
- 易用性:提供详细的安装和运行指南,方便用户快速上手。
- 可扩展性:基于现有开源库,且代码结构清晰,便于进一步定制和改进。
- 丰富的资源:包括预处理的数据集和预训练模型,大大降低了入门门槛。
要尝试HouseDiffusion的强大功能,只需按照项目文档中的步骤进行操作,无论是训练新的模型还是生成样本,都能轻松完成。我们期待你的参与,一起探索和推动AI在家居设计领域的应用边界。
引用本文档
@article{shabani2022housediffusion,
title={HouseDiffusion: Vector Floorplan Generation via a Diffusion Model with Discrete and Continuous Denoising},
author={Shabani, Mohammad Amin and Hosseini, Sepidehsadat and Furukawa, Yasutaka},
journal={arXiv preprint arXiv:2211.13287},
year={2022}
}
立即加入HouseDiffusion的社区,开启你的创新之旅!
去发现同类优质开源项目:https://gitcode.com/