使用PyTorch轻松训练Faster R-CNN模型

使用PyTorch轻松训练Faster R-CNN模型

fasterrcnn-pytorch-training-pipelinePyTorch Faster R-CNN Object Detection on Custom Dataset项目地址:https://gitcode.com/gh_mirrors/fa/fasterrcnn-pytorch-training-pipeline

项目简介

fasterrcnn-pytorch-training-pipeline 是一个为开发者和研究人员精心设计的开源项目,它简化了在自定义数据集上训练PyTorch Faster R-CNN模型的过程。该项目支持官方的COCO预训练模型,可以配合Torchvision分类模型的任何骨干网络,甚至允许你编写自己的定制骨干网络。最令人惊叹的是,在RTX 3080显卡上,你可以用Mini Darknet骨架和Mini检测头实现每秒超过150帧的实时处理速度。

示例动图

技术剖析

这个项目采用了模块化的设计,让你能够灵活选择不同的模型配置。训练脚本提供了易于理解的命令行参数,可以根据需求调整模型复杂度(例如,通过选择不同大小的头部)。此外,项目还包括一个动态跟踪功能,利用DeepSORT进行实时目标追踪,并且对MobileNet的Re-ID进行了优化。

应用场景

  1. 自动驾驶系统中的目标检测与追踪。
  2. 监控视频的安全分析。
  3. 农业领域中的病虫害检测。
  4. 医学图像中异常结构的识别。

项目特点

  1. 易用性:只需简单的命令行参数,即可在自定义数据集上快速训练模型。
  2. 灵活性:支持多种预训练模型以及自定义骨干网络。
  3. 高效性:在高性能硬件上可实现高效的实时检测,如150 FPS的速度。
  4. 扩展性:集成DeepSORT实时追踪,提供MobileNet Re-ID支持,方便进一步开发。

开始使用

你可以直接在Google Colab或Kaggle上运行项目,或者在Ubuntu或Windows本地环境进行设置。项目提供详细的安装和训练指南,以及针对不同模型的参数选项列表。

要开始训练,只需按照提供的样例数据格式准备你的自定义数据集,然后使用训练脚本,并指定数据配置文件、训练轮数、模型类型和批大小。

python train.py --data 数据配置路径 --epochs 训练轮数 --model 模型名称 --name 输出文件夹名 --batch 批大小

探索更多

项目维护者还提供了博客文章和教程,帮助你深入了解项目和模型训练过程。定期更新确保了新特性和性能优化的及时引入。

如果你正在寻找一个简单而强大的工具来训练你的目标检测模型,那么fasterrcnn-pytorch-training-pipeline无疑是理想的选择。立即加入,开启你的深度学习之旅吧!

前往GitHub仓库了解更多详情并开始探索!

fasterrcnn-pytorch-training-pipelinePyTorch Faster R-CNN Object Detection on Custom Dataset项目地址:https://gitcode.com/gh_mirrors/fa/fasterrcnn-pytorch-training-pipeline

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是使用PyTorch搭建Faster R-CNN训练网络模型的代码: ```python import torch import torchvision import torchvision.transforms as transforms import torch.optim as optim from torch.utils.data import DataLoader # Set device to GPU if available device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Define transforms for the data transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # Load the dataset trainset = torchvision.datasets.CocoDetection(root='./data', annFile='./annotations/instances_train2017.json', transform=transform) trainloader = DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2) # Define the model model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) model.to(device) # Define the optimizer and loss function params = [p for p in model.parameters() if p.requires_grad] optimizer = optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005) lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1) criterion = torchvision.models.detection.fasterrcnn_loss # Train the model num_epochs = 10 for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(trainloader, 0): # Get the inputs and labels inputs, targets = data[0].to(device), [{k: v.to(device) for k, v in t.items()} for t in data[1]] # Zero the parameter gradients optimizer.zero_grad() # Forward pass outputs = model(inputs, targets) loss = sum(criterion(out, targ) for out, targ in zip(outputs, targets)) # Backward pass loss.backward() optimizer.step() # Print statistics running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # Update the learning rate lr_scheduler.step() print('Finished Training') ``` 在这个代码中,我们使用PyTorch内置的`torchvision`库来加载COCO数据集,并使用`torch.utils.data.DataLoader`来创建数据加载器。我们还使用了`torchvision.models.detection.fasterrcnn_resnet50_fpn`来定义Faster R-CNN模型,并使用`torch.optim.SGD`作为优化器,以及`torch.optim.lr_scheduler.StepLR`来动态调整学习率。最后,我们使用了`torchvision.models.detection.fasterrcnn_loss`作为损失函数,并在训练循环中使用了标准的前向传递、后向传递和优化步骤。 需要注意的是,这个代码只是一个简单的示例,如果要在实际项目中使用,需要根据具体的需求进行修改和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓬玮剑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值