推荐项目:Contract Understanding Atticus Dataset(CUAD)
去发现同类优质开源项目:https://gitcode.com/
项目介绍
欢迎了解Contract Understanding Atticus Dataset (CUAD),一个由Atticus Project精心策划的法律合同审查数据集,发音为"kwad"。该数据集是论文《CUAD:用于法律合同审查的专家注解NLP数据集》的一部分,由Dan Hendrycks、Collin Burns、Anya Chen和Spencer Ball共同编写。CUAD旨在解决“在麦田中寻找针”的挑战——即合同审查任务,并提供了一个评估自然语言处理模型性能的新基准。
要了解更多关于CUAD和法律合同审查的信息,请访问Atticus Project的官方网站。
项目技术分析
CUAD的数据集包括经过专家注解的合同实例,用于训练和测试机器学习模型。研究发现,Transformer模型在这个领域表现出了初步的能力,但其性能强烈依赖于模型设计和训练数据量。尽管取得了一些进展,但仍存在大量的改进空间。这个特殊的大型NLP基准数据集为更广泛的NLP社区提供了新的研究机会。
项目还提供了预先训练好的模型,包括RoBERTa基础版(约100M参数)、RoBERTa大型版(约300M参数)和DeBERTa超大规模版(约900M参数),以供研究人员直接使用或进一步微调。
应用场景
CUAD适用于以下场景:
- 法律服务自动化:借助先进的NLP模型,自动检测合同中的关键条款和风险点。
- 企业合规性检查:快速识别大量合同中的潜在问题,提高工作效率。
- 教育与研究:作为自然语言理解和文本理解领域的教学材料,以及NLP算法评估的标准数据集。
项目特点
- 专业注解:所有数据都由法律专家标注,确保了结果的准确性和可靠性。
- 多规模模型支持:提供了不同大小的预训练模型,适应不同的计算资源和性能需求。
- 额外数据集:附带数GB的未标记合同数据,可用于模型的预训练,提升泛化能力。
- 易于使用:基于HuggingFace的Transformers库构建,与Python 3.8、PyTorch 1.7和Transformers 4.3/4.4兼容,简化集成过程。
如果你正寻求改进法律文档处理或者在NLP领域进行前沿研究,那么CUAD是一个不可多得的资源。请在使用时引用:
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={NeurIPS},
year={2021}
}
去发现同类优质开源项目:https://gitcode.com/