探索社交媒体谣言检测的利器:HeteroGraph-Rumor-Detector
去发现同类优质开源项目:https://gitcode.com/
在信息爆炸的时代,社交媒体成为了谣言传播的主要温床。识别和防止这些谣言的扩散是确保网络环境健康的关键。为此,我们向您推荐一款由元春园等人开发的开源项目——HeteroGraph-Rumor-Detector,它结合了局部与全局关系的异构图嵌入,为谣言检测提供了新思路。
1、项目介绍
HeteroGraph-Rumor-Detector 是一个基于 PyTorch 的深度学习模型,其核心思想是在异构图中联合嵌入局部和全局关系,以提高谣言检测的准确性和效率。该模型已经过微博和Twitter数据集的验证,并在19届国际数据挖掘大会(IEEE ICDM 2019)上发表。
2、项目技术分析
该项目利用了Gensim、jieba、scikit-learn和PyTorch等成熟库,构建了一个能够处理复杂网络结构的模型。通过预训练的word2vec进行文本表示,然后在包含用户、帖子和交互关系的异构图中进行节点嵌入。模型能够捕捉到信息传播树中的局部特征,同时考虑整个网络的全局联系,从而实现更精细的谣言检测。
3、项目及技术应用场景
此项目主要应用于社交媒体数据分析,特别是针对谣言检测。可以实时监控大量用户生成的内容,提前发现潜在的虚假信息并及时采取措施。此外,这个框架也适用于其他类型的网络分析任务,例如情感分析、社区检测或影响力预测等。
4、项目特点
- 异构图嵌入:模型能够处理多类型节点和边的复杂网络,适应社交媒体的多样特性。
- 局部-全局关系融合:整合了个体节点的信息和整体网络的拓扑结构,提高了分析的全面性。
- 开放源代码:所有代码和预处理数据都可供公众使用,方便科研人员复现结果或扩展应用。
- 易用性:提供清晰的运行脚本
run.py
,只需简单设置即可重现实验结果。
如需了解更多详情或在您的研究中引用此工作,请参阅项目文档和以下引用:
@inproceedings{rumor_yuan_2019,
title={Jointly embedding the local and global relations of heterogeneous graph for rumor detection},
author={Yuan, Chunyuan and Ma, Qianwen and Zhou, Wei and Han, Jizhong and Hu, Songlin},
booktitle={The 19th IEEE International Conference on Data Mining},
year={2019},
organization={IEEE}
}
如果你对社交媒体分析或谣言检测感兴趣,那么HeteroGraph-Rumor-Detector无疑是你的理想选择。立即加入我们,一起探索这个领域的无限可能吧!
去发现同类优质开源项目:https://gitcode.com/