AWQ: 激活感知权重量化在LLM压缩和加速中的应用

AWQ: 激活感知权重量化在LLM压缩和加速中的应用

llm-awqAWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration项目地址:https://gitcode.com/gh_mirrors/ll/llm-awq

项目介绍

AWQ(Activation-aware Weight Quantization)是一种高效的、准确的低比特权重量化方法,特别适用于大型语言模型(LLM)的压缩和加速。该项目由mit-han-lab开发,支持4-bit量化,相较于GPTQ,提供了更快的基于Transformer的推理速度。此外,AWQ还支持连续批处理服务器vLLM,允许在多用户服务器场景中进行高吞吐量的并发推理。

项目快速启动

安装依赖

首先,确保安装了必要的Python包:

pip3 install autoawq

使用示例

以下是一个简单的Python代码示例,展示如何使用AWQ模型进行文本生成:

from vllm import LLM, SamplingParams

# 设置采样参数
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

# 初始化LLM模型
llm = LLM(model="TheBloke/law-LLM-AWQ", quantization="awq", dtype="half")

# 定义输入提示
prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is"
]

# 生成文本
outputs = llm.generate(prompts, sampling_params)

# 打印输出
for output in outputs:
    prompt = output.prompt
    generated_text = output.generated_text
    print(f"Prompt: {prompt}\nGenerated text: {generated_text}\n")

应用案例和最佳实践

法律领域应用

AWQ模型在法律领域的应用尤为突出,特别是在处理大量法律文档和案例分析时。通过使用AWQ,可以显著提高处理速度和效率,同时保持高准确性。

多模态语言模型

AWQ还支持多模态语言模型,如结合文本和图像数据的处理,这在智能客服和内容生成领域有广泛应用。

典型生态项目

vLLM

vLLM是一个支持AWQ模型的连续批处理服务器,能够在多用户服务器场景中实现高吞吐量的并发推理。

AutoAWQ

AutoAWQ是一个用于自动管理AWQ模型的工具包,简化了模型的部署和使用过程。

通过以上介绍和示例,您可以快速开始使用AWQ进行大型语言模型的压缩和加速。希望这些内容对您有所帮助!

llm-awqAWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration项目地址:https://gitcode.com/gh_mirrors/ll/llm-awq

在Hugging Face Transformers库,使用AWD-QAModel(即Abridged Wasserstein Distance Quantization Model)通常涉及到将预训练的大型语言模型进行量化,以便于部署到资源有限的设备上,如手机或嵌入式系统。AWD量化是通过Quantization-Aware Training (QAT) 过程实现的,它允许模型在训练过程就考虑到量化的影响。 以下是使用Hugging Face Transformers进行AWD量化模型的基本步骤: 1. **安装依赖**: 首先,你需要安装`transformers`库及其相关的量化工具包,例如`transformers quantization`。可以使用pip安装: ``` pip install transformers[quantization] ``` 2. **加载模型**: 导入需要的模块并加载预训练的模型,比如BERT、GPT-2等: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, is_apex_available, AWDQConfig model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` 3. **量化配置**: 创建一个AWD量化配置对象: ```python config = AWDQConfig(model=model) ``` 4. **准备数据**: 将数据转换成模型接受的格式,并分割成小批次,这对于量化过程很重要。 5. **量化训练**: 使用`Trainer` API进行量化训练,这会自动在训练过程应用量化技巧: ```python trainer = Trainer( model=model, args=..., data_collator=..., train_dataset=..., eval_dataset=..., # 可选 tokenizer=tokenizer, config=config, compute_metrics=..., ) trainer.train() ``` 6. **保存量化模型**: 训练完成后,你可以保存量化后的模型: ```python trainer.save_model("path/to/save/awd_quantized_model") ``` 7. **部署**: 现在可以将这个量化模型用于推理任务,相比未量化模型,它的内存占用更小,速度更快。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张姿桃Erwin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值