AWQ:为大型语言模型加速与压缩的激活感知权重量化

AWQ:为大型语言模型加速与压缩的激活感知权重量化

llm-awqAWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration项目地址:https://gitcode.com/gh_mirrors/ll/llm-awq

在人工智能的浪潮中,大型语言模型(LLMs)已成为推动技术进步的关键力量。然而,这些模型的庞大体积和计算需求往往限制了它们在资源受限设备上的应用。今天,我们向您介绍一个革命性的开源项目——AWQ,它通过激活感知权重量化技术,为LLMs的压缩和加速提供了高效的解决方案。

项目介绍

AWQ,即Activation-aware Weight Quantization,是一种针对LLMs的低比特权重量化技术。它支持INT3/4量化,不仅适用于指令调优模型,还能处理多模态语言模型(LMs)。AWQ的核心在于其精确的量化搜索算法和预计算的模型库,使得用户能够轻松加载量化后的权重,实现快速推理。

项目技术分析

AWQ的技术亮点在于其创新的量化方法和高效的CUDA内核实现。通过AWQ搜索,项目能够提供精确的量化结果,而内存高效的4位线性层和优化的CUDA内核则确保了推理速度的大幅提升。此外,AWQ还支持多种LLMs,包括Llama、OPT、CodeLlama等,展现了其广泛的适用性和强大的兼容性。

项目及技术应用场景

AWQ的应用场景广泛,特别适合需要在资源受限的边缘平台上运行大型模型的场景。无论是云端服务器还是嵌入式设备,AWQ都能帮助用户实现高效的模型推理。例如,TinyChat利用AWQ在RTX 4090和Jetson Orin上实现了比FP16快3.4倍和3.2倍的推理速度,极大地提升了聊天机器人的响应效率。

项目特点

  1. 高效精确:AWQ通过精确的量化搜索,确保了量化后的模型性能几乎无损。
  2. 广泛支持:支持多种LLMs和多模态LMs,包括最新的Llama-3和VILA-1.5模型家族。
  3. 快速推理:优化的CUDA内核和内存高效的4位线性层,使得推理速度大幅提升。
  4. 易于部署:提供预计算的模型库和简单的安装步骤,使得用户能够轻松上手。

AWQ不仅获得了MLSys 2024最佳论文奖,还得到了AMD、Google Vertex AI等业界巨头的采用,证明了其在实际应用中的巨大价值。如果您正在寻找一种能够在资源受限设备上高效运行大型模型的解决方案,那么AWQ无疑是您的最佳选择。立即访问AWQ项目页面,开启您的智能加速之旅!

llm-awqAWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration项目地址:https://gitcode.com/gh_mirrors/ll/llm-awq

在Hugging Face Transformers库中,使用AWD-QAModel(即Abridged Wasserstein Distance Quantization Model)通常涉及到将预训练的大型语言模型进行量化,以便于部署到资源有限的设备上,如手机或嵌入式系统。AWD量化是通过Quantization-Aware Training (QAT) 过程实现的,它允许模型在训练过程中就考虑到量化的影响。 以下是使用Hugging Face Transformers进行AWD量化模型的基本步骤: 1. **安装依赖**: 首先,你需要安装`transformers`库及其相关的量化工具包,例如`transformers quantization`。可以使用pip安装: ``` pip install transformers[quantization] ``` 2. **加载模型**: 导入需要的模块并加载预训练的模型,比如BERT、GPT-2等: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, is_apex_available, AWDQConfig model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` 3. **量化配置**: 创建一个AWD量化配置对象: ```python config = AWDQConfig(model=model) ``` 4. **准备数据**: 将数据转换成模型接受的格式,并分割成小批次,这对于量化过程很重要。 5. **量化训练**: 使用`Trainer` API进行量化训练,这会自动在训练过程中应用量化技巧: ```python trainer = Trainer( model=model, args=..., data_collator=..., train_dataset=..., eval_dataset=..., # 可选 tokenizer=tokenizer, config=config, compute_metrics=..., ) trainer.train() ``` 6. **保存量化模型**: 训练完成后,你可以保存量化后的模型: ```python trainer.save_model("path/to/save/awd_quantized_model") ``` 7. **部署**: 现在可以将这个量化模型用于推理任务,相比未量化模型,它的内存占用更小,速度更快。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

娄妃元Kacey

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值