MatterGen 使用教程

MatterGen 使用教程

mattergen Official implementation of MatterGen -- a generative model for inorganic materials design across the periodic table that can be fine-tuned to steer the generation towards a wide range of property constraints. mattergen 项目地址: https://gitcode.com/gh_mirrors/ma/mattergen

1. 项目介绍

MatterGen 是由微软开发的一个开源项目,旨在为无机材料设计提供生成模型。该模型能够遍历周期表,并根据广泛的属性约束进行微调,以引导材料生成的方向。MatterGen 的设计理念是帮助科研人员和工程师更加高效地探索和设计新材料。

2. 项目快速启动

环境安装

首先,确保您的系统中已经安装了 Python 和 pip。然后,您可以通过以下命令安装 MatterGen 的环境:

pip install uv
uv venv .venv --python 3.10
source .venv/bin/activate
uv pip install -e .

请注意,MatterGen 使用了 Git Large File Storage (LFS) 来存储数据集和模型检查点。如果您还没有安装 LFS,可以通过以下命令安装:

sudo apt install git-lfs
git lfs install

运行预训练模型

MatterGen 提供了几个预训练模型,您可以通过以下命令来运行一个预训练的基模型:

export MODEL_NAME=mattergen_base
export RESULTS_PATH=results/
mattergen-generate $RESULTS_PATH --pretrained-name=$MODEL_NAME --batch_size=16 --num_batches 1

上述命令将在 results/ 目录下生成一系列材料结构。

3. 应用案例和最佳实践

无条件生成

无条件生成允许您从基模型中随机生成材料结构。如前所述,您可以使用 mattergen-generate 命令来执行此操作。

条件生成

条件生成允许您根据特定的属性来生成材料结构。例如,如果您想要根据磁密度生成材料,可以这样做:

export MODEL_NAME=dft_mag_density
export RESULTS_PATH="results/$MODEL_NAME/"
mattergen-generate $RESULTS_PATH --pretrained-name=$MODEL_NAME --batch_size=16 --properties_to_condition_on='{"dft_mag_density": 0.15}' --diffusion_guidance_factor=2.0

在此命令中,--diffusion_guidance_factor 参数控制了生成样本对输入属性值的遵循程度。

4. 典型生态项目

MatterGen 可以被集成到更大的材料科学工作流程中,例如用于新材料发现的自动化管道,或者作为机器学习工作坊的一部分。一些典型的生态项目可能包括:

  • 使用 MatterGen 生成的结构进行量子力学计算。
  • 将 MatterGen 集成到材料数据库中,以丰富数据库的内容。
  • 结合实验数据,使用 MatterGen 进行材料属性的预测。

以上就是 MatterGen 的使用教程。希望这些信息能够帮助您开始使用这个强大的工具。

mattergen Official implementation of MatterGen -- a generative model for inorganic materials design across the periodic table that can be fine-tuned to steer the generation towards a wide range of property constraints. mattergen 项目地址: https://gitcode.com/gh_mirrors/ma/mattergen

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

背景描述 2016 年全球生态足迹 您所在国家消耗的资源是否超过一年产生的资源? 数据说明 上下文 生态足迹衡量的是特定人口生产其消耗的自然资源(包括植物性食品和纤维产品、牲畜和鱼产品、木材和其他林产品、城市基础设施的空间)和吸收其废物(尤其是碳排放)所需的生态资产。该足迹跟踪了六类生产性表面积的使用情况:农田、牧场、渔场、建成区(或城市)土地、森林面积和土地上的碳需求。 一个国家的生物承载力代表其生态资产的生产力,包括农田、牧场、林地、渔场和建筑用地。这些区域,尤其是如果不采伐,也可以吸收我们产生的大部分废物,尤其是我们的碳排放。 生态足迹和生物承载力都以全球公顷表示,即具有全球可比性的标准化公顷数与世界平均生产力。 如果一个种群的生态足迹超过该地区的生物承载力,则该区域就会出现生态赤字。它对其陆地和海洋所能提供的商品和服务的需求——水果和蔬菜、肉类、鱼类、木材、服装用棉花和二氧化碳吸收——超过了该地区生态系统可以更新的需求。生态赤字地区通过进口、变现自己的生态资产(如过度捕捞)和/或向大气中排放二氧化碳来满足需求。如果一个地区的生物承载力超过其生态足迹,它就拥有生态保护区。 确认 生态足迹测量是由不列颠哥伦比亚大学的 Mathis Wackernagel 和 William Rees 构思的。生态足迹数据由 Global Footprint Network 提供。 灵感 您的国家是否存在生态赤字,消耗的资源超过了每年的产量?哪些国家的生态赤字或保护区最大?他们的消费量是比普通国家少还是多?2017 年地球超载日,即日历上人类使用一年自然资源的日子,何时发生?
### MatterGen在清华大学镜像站的资源获取 MatterGen 是一种基于人工智能技术开发的大规模预训练模型,其应用范围广泛,在多个领域取得了显著成果[^1]。为了方便国内研究人员访问和下载相关资源,许多知名项目会托管于清华大学开源软件镜像站(TUNA)。通过该站点可以更稳定、快速地获取所需文件。 #### 如何查找并下载MatterGen? 1. **确认官方支持渠道** 需要先核实 MatterGen 是否已正式发布至清华大学 TUNA 镜像站。通常情况下,这类大型 AI 模型会被上传到专门用于存储机器学习数据集与模型权重的子目录下,例如 `https://mirrors.tuna.tsinghua.edu.cn/` 的对应部分。 2. **具体路径导航** 如果 MatterGen 已被收录,则可能位于如下地址之一: - Hugging Face Models Mirror: `https://mirrors.tuna.tsinghua.edu.cn/hugging-face-models/` 这里包含了来自 Hugging Face 社区共享的各种高质量 NLP 和多模态模型。 - Anaconda Cloud Repository Mirror: `https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/` 若 MatterGen 提供 Conda 安装包形式分发,可在此处找到相关内容。 3. **命令行方式安装** 如果上述链接中有对应的版本可用,可以通过 pip 或 conda 命令实现自动化部署。以下是两种常见方法的例子: ```bash pip install mattergen --index-url https://pypi.tuna.tsinghua.edu.cn/simple/ ``` 或者利用 conda 环境管理工具完成加载操作: ```bash conda install -c tuna mattergen ``` 以上脚本片段假设目标库已经被适配进入标准 Python 生态体系之中;如果不是这样简单的情形,请参照开发者文档进一步调整参数设置。 #### 注意事项 由于网络环境变化以及维护策略不同步等原因,实际体验可能会有所差异。建议定期关注原作者团队动态更新说明,并结合本地测试情况灵活选用最佳方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张姿桃Erwin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值