MatterGen解读

【论文标题】MatterGen: a generative model for inorganic materials design

【论文链接】https://arxiv.org/pdf/2312.03687

【代码链接】https://github.com/microsoft/mattergen

【论文单位/作者】Microsoft Research AI4Science

【论文出处】Nature

摘要

【技术亮点/创新点】

1、Al for science 中一个非常considerable 的应用,输入材料性质,输出材料结构(inorganic material 无机材料).

2、用fine-tune来学习 unconditional score network,实现了在稀疏标记的数据机制中快速学习。

3、引入了适配器模块,可以用于在具有属性标签的附加数据集上微调基础模型。即使标记数据集与未标记结构数据集相比很小,却仍然有效。

工作原理/方法

1、首先预训练一个通用的基础模型,用于生成整个周期表中的稳定、多样的晶体,然后针对不同的下游任务微调该基础模型。然后针对各种不同的propertyies 进行fine-tune,能大幅提高预测效果。

2、通过对coordinates,atom types,cell 等进行step-by-step的diffusion,而训练loss时则采用三者相加的形式。

Loss = \lambda_{\text{coord}} L_{\text{coord}} + \lambda_{\text{cell}} L_{\text{cell}} + \lambda_{\text{types}} L_{\text{types}}

3、使用一个 SE(3)-equivariant GNN 来预测 lattice、atom positions,和 atom types。

4、to fine-tune the unconditional score network with additional trainable adapter modules

实验结果

1、当验证损失停止改善 100 个 epoch 时停止训练,结果是 32,000^-1.1百万步,具体取决于数据集。

2、经过微调,MatterGen 成功生成了具有所需化学、对称性以及机械、电子和磁性的稳定、新颖的材料。

3、通过提出具有高磁密度和低供应链风险化学成分的结构来展示了多属性材料设计能力。

总结

1、非常direct的材料学炸弹,给性质,出结构。

2、对于复杂的组成,和结构,微软团队使用了逐步的diffusion,使得模型能逐步学习推理。

3、使用fine-tune提高了更广泛的扩展性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值