Word Embedding Visual Inspector 项目推荐
wevi Word Embedding Visual Inspector 项目地址: https://gitcode.com/gh_mirrors/we/wevi
Word Embedding Visual Inspector(以下简称WEVI)是一个开源项目,主要用于可视化词向量,帮助用户更直观地理解词向量之间的关系。该项目主要使用JavaScript进行开发,同时使用了HTML和CSS进行界面设计。
项目基础介绍
WEVI是一款基于Web的词向量可视化工具。它可以帮助研究人员和数据科学家更好地理解词向量模型,通过可视化的方式展现词向量之间的相似度和关联性。WEVI不仅支持多种词向量模型的导入,还提供了丰富的交互功能,使词向量分析更加便捷。
项目核心功能
- 词向量模型导入:支持多种词向量模型的导入,如Word2Vec、GloVe等。
- 可视化展现:通过高维空间降维技术(如t-SNE、PCA等),将词向量在二维或三维空间中进行展现,使得用户可以直观地看到词向量之间的相似度和关联性。
- 交互操作:用户可以通过鼠标点击、拖动等操作选择特定的词,查看其周围的词向量,或对词向量进行放大、缩小、旋转等操作。
- 词相似度查询:用户可以输入一个词,查询与其最相似的词,并展示在可视化界面中。
- 自定义颜色和标签:用户可以根据自己的需要,为不同的词向量设置不同的颜色和标签。
项目最近更新的功能
最近更新的功能主要包括:
- 性能优化:对算法进行了优化,提高了词向量导入和可视化的速度。
- 界面美化:对用户界面进行了改进,提高了用户体验。
- 新增词向量模型支持:增加了对更多词向量模型的支持,如BERT等。
- 功能扩展:增加了词向量距离计算和可视化功能,用户可以更方便地分析词向量之间的关系。
wevi Word Embedding Visual Inspector 项目地址: https://gitcode.com/gh_mirrors/we/wevi
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考