DGCNN 项目使用教程
dgcnn 项目地址: https://gitcode.com/gh_mirrors/dg/dgcnn
1. 项目的目录结构及介绍
DGCNN(Dynamic Graph CNN for Learning on Point Clouds)项目的目录结构如下:
dgcnn/
├── pytorch/
│ ├── __init__.py
│ ├── model.py
│ ├── train.py
│ └── utils.py
├── tensorflow/
│ ├── __init__.py
│ ├── model.py
│ ├── train.py
│ └── utils.py
├── .gitignore
├── LICENSE
└── README.md
目录结构介绍
-
pytorch/:包含使用 PyTorch 框架实现的 DGCNN 模型相关文件。
__init__.py
:初始化文件。model.py
:定义了 DGCNN 模型的架构。train.py
:训练模型的脚本。utils.py
:包含一些辅助函数和工具。
-
tensorflow/:包含使用 TensorFlow 框架实现的 DGCNN 模型相关文件。
__init__.py
:初始化文件。model.py
:定义了 DGCNN 模型的架构。train.py
:训练模型的脚本。utils.py
:包含一些辅助函数和工具。
-
.gitignore:Git 忽略文件,指定哪些文件和目录不需要被 Git 跟踪。
-
LICENSE:项目的开源许可证文件,本项目使用 MIT 许可证。
-
README.md:项目的说明文件,包含项目的概述、使用方法、引用信息等。
2. 项目的启动文件介绍
PyTorch 版本
在 pytorch/
目录下,主要的启动文件是 train.py
。该文件负责加载数据、定义模型、训练模型并保存训练结果。
# train.py
import torch
from model import DGCNN
from utils import load_data, train_model
# 加载数据
data = load_data('path/to/data')
# 定义模型
model = DGCNN()
# 训练模型
train_model(model, data)
TensorFlow 版本
在 tensorflow/
目录下,主要的启动文件也是 train.py
。该文件负责加载数据、定义模型、训练模型并保存训练结果。
# train.py
import tensorflow as tf
from model import DGCNN
from utils import load_data, train_model
# 加载数据
data = load_data('path/to/data')
# 定义模型
model = DGCNN()
# 训练模型
train_model(model, data)
3. 项目的配置文件介绍
DGCNN 项目没有显式的配置文件(如 .yaml
或 .json
文件),但可以通过修改 train.py
中的参数来配置训练过程。例如,可以修改数据路径、模型参数、训练轮数等。
示例配置
# train.py
# 数据路径
data_path = 'path/to/data'
# 模型参数
learning_rate = 0.001
batch_size = 32
num_epochs = 100
# 加载数据
data = load_data(data_path)
# 定义模型
model = DGCNN(learning_rate=learning_rate)
# 训练模型
train_model(model, data, batch_size=batch_size, num_epochs=num_epochs)
通过修改这些参数,可以灵活地配置训练过程。