DGCNN 项目使用教程

DGCNN 项目使用教程

dgcnn 项目地址: https://gitcode.com/gh_mirrors/dg/dgcnn

1. 项目的目录结构及介绍

DGCNN(Dynamic Graph CNN for Learning on Point Clouds)项目的目录结构如下:

dgcnn/
├── pytorch/
│   ├── __init__.py
│   ├── model.py
│   ├── train.py
│   └── utils.py
├── tensorflow/
│   ├── __init__.py
│   ├── model.py
│   ├── train.py
│   └── utils.py
├── .gitignore
├── LICENSE
└── README.md

目录结构介绍

  • pytorch/:包含使用 PyTorch 框架实现的 DGCNN 模型相关文件。

    • __init__.py:初始化文件。
    • model.py:定义了 DGCNN 模型的架构。
    • train.py:训练模型的脚本。
    • utils.py:包含一些辅助函数和工具。
  • tensorflow/:包含使用 TensorFlow 框架实现的 DGCNN 模型相关文件。

    • __init__.py:初始化文件。
    • model.py:定义了 DGCNN 模型的架构。
    • train.py:训练模型的脚本。
    • utils.py:包含一些辅助函数和工具。
  • .gitignore:Git 忽略文件,指定哪些文件和目录不需要被 Git 跟踪。

  • LICENSE:项目的开源许可证文件,本项目使用 MIT 许可证。

  • README.md:项目的说明文件,包含项目的概述、使用方法、引用信息等。

2. 项目的启动文件介绍

PyTorch 版本

pytorch/ 目录下,主要的启动文件是 train.py。该文件负责加载数据、定义模型、训练模型并保存训练结果。

# train.py

import torch
from model import DGCNN
from utils import load_data, train_model

# 加载数据
data = load_data('path/to/data')

# 定义模型
model = DGCNN()

# 训练模型
train_model(model, data)

TensorFlow 版本

tensorflow/ 目录下,主要的启动文件也是 train.py。该文件负责加载数据、定义模型、训练模型并保存训练结果。

# train.py

import tensorflow as tf
from model import DGCNN
from utils import load_data, train_model

# 加载数据
data = load_data('path/to/data')

# 定义模型
model = DGCNN()

# 训练模型
train_model(model, data)

3. 项目的配置文件介绍

DGCNN 项目没有显式的配置文件(如 .yaml.json 文件),但可以通过修改 train.py 中的参数来配置训练过程。例如,可以修改数据路径、模型参数、训练轮数等。

示例配置

# train.py

# 数据路径
data_path = 'path/to/data'

# 模型参数
learning_rate = 0.001
batch_size = 32
num_epochs = 100

# 加载数据
data = load_data(data_path)

# 定义模型
model = DGCNN(learning_rate=learning_rate)

# 训练模型
train_model(model, data, batch_size=batch_size, num_epochs=num_epochs)

通过修改这些参数,可以灵活地配置训练过程。

dgcnn 项目地址: https://gitcode.com/gh_mirrors/dg/dgcnn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强妲佳Darlene

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值