Semantic Kernel RAG Chat 项目教程

Semantic Kernel RAG Chat 项目教程

semantic-kernel-rag-chat Tutorial for ChatGPT + Enterprise Data with Semantic Kernel, OpenAI, and Azure Cognitive Search semantic-kernel-rag-chat 项目地址: https://gitcode.com/gh_mirrors/se/semantic-kernel-rag-chat

项目介绍

Semantic Kernel RAG Chat 是一个基于 Semantic Kernel 和 Azure Cognitive Search 的开源项目,旨在帮助开发者构建一个能够结合企业数据的 AI 聊天应用。该项目通过 Retrieval Augmented Generation (RAG) 模式,将外部知识库与对话系统融合,使得 AI 能够提供更加准确和相关的回答。

项目快速启动

环境配置

在开始之前,请确保您已经安装了以下工具和环境:

  • Visual Studio Code
  • .NET 7 SDK
  • Azure Function Core Tools 4.x
  • OpenAI API Key

克隆项目

首先,克隆项目到本地:

git clone https://github.com/Azure-Samples/semantic-kernel-rag-chat.git

创建 Azure Function 项目

  1. 打开 Visual Studio Code,点击 Azure 扩展(或按 SHIFT+ALT+A)。
  2. 鼠标悬停在 WORKSPACE(左下角),选择 Create Function(即 +⚡)创建一个新的本地 Azure Function 项目。
  3. 选择 Browse,创建一个名为 myfunc 的文件夹,用于存放 Azure Function 代码。
  4. 创建项目时,选择以下配置:
    • 语言:C#
    • 运行时:.NET 7 Isolated
    • 模板:Http trigger
    • 函数名称:MyChatFunction
    • 访问权限:Function

添加 Semantic Kernel 依赖

在终端中,切换到 myfunc 目录,并运行以下命令以添加 Semantic Kernel NuGet 包:

dotnet add package Microsoft.SemanticKernel --prerelease -v 0.14.547.1-preview

配置 OpenAI API Key

使用以下命令配置 .NET User Secrets 并安全存储您的 OpenAI API Key:

dotnet add package Microsoft.Extensions.Configuration.UserSecrets
dotnet user-secrets init --id semantic-kernel-rag-chat
dotnet user-secrets set "OPENAI_APIKEY" "<your OpenAI API key>"

运行 Azure Function

在终端中,切换到 myfunc 目录,并启动 Azure Function:

func start

启动测试控制台应用

打开一个新的终端,切换到 chatconsole 项目文件夹,并运行以下命令启动测试控制台应用:

dotnet run http://localhost:7071/api/MyChatFunction

应用案例和最佳实践

应用案例

Semantic Kernel RAG Chat 可以应用于多种场景,例如:

  • 企业知识库问答:通过将企业内部文档和知识库导入到 Semantic Kernel 中,构建一个能够回答员工问题的聊天机器人。
  • 客户支持:结合客户常见问题和产品文档,提供实时的客户支持服务。
  • 教育培训:为学生和教师提供一个能够回答课程相关问题的智能助手。

最佳实践

  • 数据预处理:在导入数据到 Semantic Kernel 之前,确保数据已经过清洗和格式化,以提高检索和生成的准确性。
  • 上下文管理:合理管理对话上下文,确保 AI 能够理解并记住之前的对话内容,提供连贯的回答。
  • 性能优化:对于大规模数据集,考虑使用分布式存储和检索技术,以提高系统的响应速度。

典型生态项目

Azure Cognitive Search

Azure Cognitive Search 是一个强大的云搜索服务,能够帮助开发者构建丰富的搜索体验。通过与 Semantic Kernel 结合,可以实现更加智能的搜索和问答功能。

OpenAI GPT-3

OpenAI GPT-3 是一个先进的自然语言处理模型,能够生成高质量的文本。Semantic Kernel 通过与 GPT-3 集成,使得聊天机器人能够提供更加自然和准确的回答。

Qdrant VectorDB

Qdrant 是一个高效的向量数据库,适用于存储和检索高维向量数据。通过与 Semantic Kernel 结合,可以实现高效的向量搜索和相似度匹配。

通过以上模块的介绍和实践,您可以快速上手并深入了解 Semantic Kernel RAG Chat 项目,构建出功能强大的 AI 聊天应用。

semantic-kernel-rag-chat Tutorial for ChatGPT + Enterprise Data with Semantic Kernel, OpenAI, and Azure Cognitive Search semantic-kernel-rag-chat 项目地址: https://gitcode.com/gh_mirrors/se/semantic-kernel-rag-chat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

劳治亮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值