推荐文章:通过防止注意力熵塌缩稳定Transformer训练
去发现同类优质开源项目:https://gitcode.com/
项目介绍
在深度学习领域,Transformer模型已经成为了序列处理任务的主流架构。然而,其训练过程中的不稳定性一直是一个挑战。Stabilizing Transformer Training by Preventing Attention Entropy Collapse 是一项在ICML 2023发表的研究,针对这一问题提供了解决方案。该项目引入了一个新的视角——注意力熵坍缩
(Entropy Collapse),并提出了一种称为$\sigma$ Reparam的方法来增强Transformer的训练稳定性。
项目技术分析
项目作者定义了注意力熵,并观察到当训练过程中平均注意力熵急剧下降时,模型的训练往往变得不稳定。为了解决这个问题,他们提出了$\sigma$ Reparam重参数化策略。通过将所有权重重新表示为 $\widehat{W}=\frac{\gamma}{\sigma(W)}W$ 的形式,其中 $\sigma(W)$ 表示权重的标准差,这种方法可以有效防止注意力分布过于集中,从而缓解熵坍缩现象。
项目及技术应用场景
项目提供了PyTorch和JAX两个参考实现,分别应用于视觉领域的Vision Transformer (VIT) 和语音识别(ASR)任务。此外,相同的PyTorch实现也被用于语言建模(LM)和机器翻译(MT)实验,显示出该方法有广泛的应用前景。
项目特点
- 新颖视角:项目首次将注意力熵坍缩作为研究Transformer训练不稳定的焦点。
- 简单而有效:$\sigma$ Reparam是一种轻量级解决方案,只需要对模型权重进行简单的调整就能显著改善训练效果。
- 跨平台支持:提供的代码实现覆盖了PyTorch和JAX两种流行框架,适应不同的开发环境需求。
- 广泛应用:不仅适用于视觉和语音领域,还能扩展到自然语言处理中的多种任务。
如果您正在使用Transformer模型并面临训练难题,这个项目无疑提供了一个值得尝试的解决方案。它不仅可以提高模型的训练效率,而且可能帮助您实现更优的性能。快加入项目,体验由防止注意力熵坍缩带来的稳定性和性能提升吧!
去发现同类优质开源项目:https://gitcode.com/
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考