ST-TR:基于骨骼的活动识别的空间时间变换器网络教程

ST-TR:基于骨骼的活动识别的空间时间变换器网络教程

ST-TR 项目地址: https://gitcode.com/gh_mirrors/st/ST-TR

1. 目录结构及介绍

ST-TR 是一个用于基于骨架的活动识别的空间时间变换器网络实现。以下是其主要的目录结构及其简介:

  • additional_files: 可能包含了额外的数据或配置文件,对于运行项目不是必需的核心部分。
  • checkpoint_ST-TR: 包含预训练模型,用户可以利用这些模型进行测试或者迁移学习。
  • code: 主代码存放地,包括了核心模型的实现。
    • st_gcn: 模型定义的子目录,里面进一步划分了网络组件,如空间变换器和时间变换器相关代码。
  • LICENSE, LICENSE_1, LICENSE_2: 不同部分代码的许可协议,由于代码可能从不同来源合并而来,因此有多个许可文件。
  • requirements.txt: 列出了项目运行所需的所有Python库依赖。
  • README.md: 此文件提供了关于项目的基本信息,包括如何运行、论文引用等。
  • ntu_gendata.py, preprocess.py, ntu_gen_bones.py, 等: 这些脚本用于数据处理和预处理,适用于特定的骨架数据集,如NTU-RGB+D 60。

2. 项目的启动文件介绍

主要的启动文件是 main.py,它被设计成项目的入口点。通过运行此脚本,你可以开始训练模型或进行测试,具体行为取决于配置文件中的设置。使用方法通常如下:

python3 main.py

但是,在执行之前,你需要根据你的需求编辑配置文件来指定是训练还是测试模式,并且可以调整其他参数。

3. 项目的配置文件介绍

配置文件位于 /config/st_gcn/nturgbd/train.yaml(以NTU-RGB+D数据集为例)。这个YAML文件详细设置了模型训练或测试的各种参数,关键包括:

  • Training: 设置为True时,程序将进入训练模式;反之,则为测试模式。
  • attention, tcn_attention, only_attention, 和 all_layers: 控制着空间时间变换器的启用状态以及它们应用的方式。比如,attention=True 启用自我注意力机制,all_layers=True 表示变换器应用于所有层而不是仅从某层开始。
  • agcn: 设置为True允许使用自适应图卷积网络配置。
  • 其他参数可能包括数据路径、批大小、学习率等,根据实际研究或实验要求调整。

为了针对性地控制ST-TR的不同配置,如使用自我注意作为增强步骤、在所有层应用变换器或是结合空间与时间变换流,用户应仔细修改该配置文件。例如,要运行时空变换流并融合结果,需确保配置正确设置注意力机制及相关流的激活情况。

在操作前,确保已安装必要的Python环境和PyTorch框架,并通过pip安装配置文件中列出的其他依赖项,遵循requirements.txt文件即可。此外,别忘了处理数据集,使用相应的脚本生成必要的输入数据。

ST-TR 项目地址: https://gitcode.com/gh_mirrors/st/ST-TR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潘惟妍

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值