WIRE:基于小波的隐式神经表示
wire wavelet implicit neural representations 项目地址: https://gitcode.com/gh_mirrors/wire4/wire
项目介绍
WIRE(Wavelet Implicit Neural Representations)是一个基于连续复数Gabor小波的隐式神经表示(INR)项目。该项目通过引入一种新的非线性激活函数,显著提升了隐式神经表示在视觉信号处理中的表现。WIRE结合了正弦函数的频率紧凑性和高斯函数的空域紧凑性,使其在处理具有强边缘的图像时,能够快速且准确地学习表示,同时对噪声和数据欠采样具有较强的鲁棒性。
项目技术分析
WIRE的核心创新在于其非线性激活函数的设计。与传统的正弦激活函数(如SIREN)和高斯激活函数相比,WIRE使用的是连续复数Gabor小波。这种小波在频率和空域上都具有良好的局部特性,使得WIRE在处理图像信号时能够更好地捕捉细节,减少全局振铃效应,并在边缘处保持较小的误差。
此外,WIRE项目还提供了多种应用场景的实现代码,包括图像去噪、点云表示、多图像超分辨率、计算机断层扫描重建等。这些应用场景展示了WIRE在不同领域中的广泛适用性和高效性。
项目及技术应用场景
-
图像去噪:通过
wire_image_denoise.py
脚本,WIRE可以有效地去除图像中的噪声,同时保留图像的细节和边缘信息。 -
点云表示:使用
wire_occupancy.py
脚本,WIRE可以对3D形状进行占用信息拟合,适用于3D建模和渲染。 -
多图像超分辨率:
wire_multi_sr.py
脚本展示了WIRE在多图像超分辨率中的应用,通过处理具有微小运动差异的多帧图像,提升图像的分辨率。 -
计算机断层扫描重建:
wire_ct.py
脚本展示了WIRE在CT图像重建中的应用,能够从测量数据中准确重建出高质量的图像。
项目特点
-
高效性:WIRE在处理图像信号时,能够快速且准确地学习表示,显著减少了训练时间和计算资源的需求。
-
鲁棒性:WIRE对噪声和数据欠采样具有较强的鲁棒性,能够在不完整或带有噪声的数据中保持良好的表现。
-
多功能性:WIRE不仅适用于图像去噪,还可以应用于点云表示、多图像超分辨率和CT图像重建等多个领域,展示了其广泛的适用性。
-
创新性:WIRE引入了基于连续复数Gabor小波的非线性激活函数,这一创新设计显著提升了隐式神经表示在视觉信号处理中的表现。
总之,WIRE项目通过其创新的技术设计和广泛的应用场景,为隐式神经表示领域带来了新的突破。无论是学术研究还是实际应用,WIRE都值得广大用户深入探索和使用。
wire wavelet implicit neural representations 项目地址: https://gitcode.com/gh_mirrors/wire4/wire