ViLT 模型使用教程

ViLT 模型使用教程

ViLTCode for the ICML 2021 (long talk) paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"项目地址:https://gitcode.com/gh_mirrors/vi/ViLT

1. 项目目录结构及介绍

以下为ViLT项目的基本目录结构:

ViLT/
├── README.md            # 项目说明
├── config/               # 配置文件夹
│   ├── base_config.yaml  # 基础配置文件
│   └── ...               # 其他配置文件
├── dataset/              # 数据集处理代码
├── model/                # 模型代码
│   ├── vilt.py           # ViLT模型定义
│   └── ...               # 相关辅助类
├── processor/            # 输入数据预处理模块
│   ├── vilt_processor.py # ViLT处理器
│   └── ...               # 图像和文本处理器
├── scripts/              # 脚本文件夹
│   ├── train.py          # 训练脚本
│   ├── eval.py           # 评估脚本
│   └── infer.py          # 推断脚本
└── requirements.txt      # 依赖项列表
  • config/: 存放配置文件,用于设置训练、评估和推断参数。
  • dataset/: 包含数据集加载和预处理的代码。
  • model/: 定义了ViLT模型及其相关组件。
  • processor/: 提供了处理输入图像和文本的工具类。
  • scripts/: 包含执行不同任务(如训练、评估或推断)的Python脚本。
  • requirements.txt: 列出了项目所需的外部库。

2. 项目的启动文件介绍

2.1 train.py

训练脚本train.py用于从头开始训练ViLT模型。它使用配置文件中的参数来设定训练的细节,例如学习率、批次大小等。通过修改配置文件或者在运行时传递命令行参数,可以调整训练过程。

2.2 eval.py

评估脚本eval.py用于评估一个已经训练好的ViLT模型在特定验证集上的性能。同样可以通过配置文件或命令行参数进行参数调整。

2.3 infer.py

推断脚本infer.py允许你使用预训练的ViLT模型对新的图像-文本对进行预测。这个脚本适用于在下游任务中应用模型,比如图像问答或者视觉推理。

3. 项目的配置文件介绍

config/目录下的.yaml文件是项目的关键,它们包含了模型训练、评估和推断的各种参数。

  • base_config.yaml: 提供了一个基础配置模板,包括模型架构、优化器选择、学习率调度策略等通用设置。其他配置文件通常基于此基础配置进行扩展和覆盖。

配置文件可能包含以下部分:

  • model: 关于模型架构的详细信息,如模型尺寸、注意力头部数量等。
  • optimizer: 选择优化器类型(如AdamW)以及其参数,如学习率、权重衰减等。
  • scheduler: 学习率调度策略,如步长衰减或cosineannealing。
  • data: 数据集路径、预处理选项,以及训练和验证批次大小等。
  • training: 训练超参数,如总迭代次数、保存检查点的频率等。
  • inference: 用于推断时的设置,如输出结果的存储位置等。

要使用不同的配置,只需在运行脚本时指定相应的配置文件即可。例如,对于训练:

python scripts/train.py --config config/my_config.yaml

记得根据实际需求调整配置以获得最佳性能或满足资源限制。

ViLTCode for the ICML 2021 (long talk) paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"项目地址:https://gitcode.com/gh_mirrors/vi/ViLT

### ViLT 模型架构详解 ViLT(Vision-and-Language Transformer)是一种基于Transformer的多模态模型,旨在统一处理视觉和语言任务。以下是其主要组成部分及其功能: #### 1. **轻量级视觉输入嵌入** 为了减少计算复杂度并提高效率,ViLT采用了一种简单的线性投影方法来嵌入图像补丁(patches)。这种方法避免了传统卷积神经网络(CNNs)作为视觉特征提取器的需求,从而显著降低了计算开销[^4]。 #### 2. **拼接后的向量表示** 在ViLT中,文本和图像被分别编码成固定长度的向量序列,并通过一种特殊的方式进行拼接。具体来说,经过预处理的文本和图像数据会被转换为具有相同维度的向量形式,最终形成形状为 `[batch_size, text_max_length + 145, 768]` 的张量[^5]。这种设计使得两种不同类型的输入能够无缝融合到同一个Transformer框架下。 #### 3. **Encoder 层的设计** ViLT 的 Encoder 部分遵循 Vision Transformers (ViT) 的经典布局,主要包括以下几个子模块: - **自注意力机制**: 实现于 `ViltSelfAttention` 和 `ViltSelfOutput` 中,负责捕捉全局上下文中各个 token 之间的关系。 - **交叉注意机制**: 第一次黄色加绿色区域对应于此阶段 (`ViltAttention`) ,允许视觉与文字之间相互作用。 - **前馈网络(FFN)**: 黄色加上蓝色部分构成了标准 MLP 结构(`ViltMLP`) ,进一步增强了表达能力。 值得注意的是,由于引入了专门定制化的 Layer ——即所谓的 “VlitLayer”, 用户可以根据实际需求灵活调整堆叠层数以适应不同的应用场景. #### 4. **训练技巧的影响分析** 从实验结果来看,某些常见的 NLP 或 CV 技巧对提升 ViLT 性能的效果并不一致: - Whole Word Masking(WWM): 对整体表现有所改善但幅度较小. - Masked Patch Prediction(MPP): 尝试利用该目标函数改进图片理解效果不佳因此未继续沿用 . - Random Augmentation(RandAugment): 显示出了较为明显的正面贡献.[^3] 综上所述,VILT 不仅继承了 transformer 在单一领域内的强大优势还创造性地解决了跨媒体间协作难题. ```python class ViltModel(nn.Module): def __init__(self, config): super().__init__() self.text_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.patch_embeddings = nn.Linear(config.image_patch_dim, config.hidden_size) encoder_layer = nn.TransformerEncoderLayer( d_model=config.hidden_size, nhead=config.num_attention_heads, dim_feedforward=config.intermediate_size, dropout=config.hidden_dropout_prob ) self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=config.num_hidden_layers) def forward(self, input_ids, pixel_values): # Text embeddings text_embeds = self.text_embeddings(input_ids) # Image patch embeddings batch_size, _, height, width = pixel_values.shape patches = rearrange(pixel_values, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=16, p2=16) image_embeds = self.patch_embeddings(patches) # Concatenate and encode combined_embeds = torch.cat([text_embeds, image_embeds], dim=1) output = self.encoder(combined_embeds.permute(1, 0, 2)) return output.permute(1, 0, 2) ``` 上述代码片段展示了如何构建一个基本版本的 ViLT 模型,其中包含了文本和图像的嵌入过程以及后续的 Transformer 编码操作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

任澄翊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值