30 Days of ML Kaggle 项目教程
1. 项目的目录结构及介绍
30-Days-of-ML-Kaggle/
├── data/
│ ├── raw/
│ ├── processed/
│ └── external/
├── notebooks/
│ ├── day1.ipynb
│ ├── day2.ipynb
│ └── ...
├── src/
│ ├── __init__.py
│ ├── preprocessing.py
│ └── models.py
├── config/
│ ├── config.yaml
│ └── logging.yaml
├── README.md
├── requirements.txt
└── setup.py
data/
: 存储数据文件,包括原始数据、处理后的数据和外部数据。notebooks/
: 包含每天的学习笔记和代码示例。src/
: 包含项目的源代码,如数据预处理和模型训练的脚本。config/
: 包含项目的配置文件,如配置参数和日志配置。README.md
: 项目说明文档。requirements.txt
: 项目依赖的Python包列表。setup.py
: 项目安装脚本。
2. 项目的启动文件介绍
项目的启动文件通常是 notebooks/
目录下的 Jupyter Notebook 文件,例如 day1.ipynb
。这些文件包含了每天的学习内容和代码示例,用户可以通过运行这些 Notebook 来学习和实践机器学习的基础知识。
3. 项目的配置文件介绍
config/
目录下的 config.yaml
文件包含了项目的配置参数,例如数据路径、模型参数等。logging.yaml
文件则包含了日志配置,用于记录项目运行时的日志信息。
# config.yaml
data_path: "data/raw"
model_params:
learning_rate: 0.01
epochs: 100
# logging.yaml
version: 1
disable_existing_loggers: false
formatters:
simple:
format: '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
handlers:
console:
class: logging.StreamHandler
level: DEBUG
formatter: simple
stream: ext://sys.stdout
loggers:
simpleExample:
level: DEBUG
handlers: [console]
propagate: no
root:
level: DEBUG
handlers: [console]
通过这些配置文件,用户可以方便地调整项目的运行参数和日志记录方式。