RL Baselines3 Zoo 项目教程
项目地址:https://gitcode.com/gh_mirrors/rl/rl-baselines3-zoo
1. 项目的目录结构及介绍
RL Baselines3 Zoo 是一个用于使用 Stable Baselines3 进行强化学习训练的框架。以下是项目的目录结构及其介绍:
rl-baselines3-zoo/
├── .github/
├── configs/
├── logs/
├── plots/
├── rl_zoo3/
│ ├── __init__.py
│ ├── callbacks.py
│ ├── enjoy.py
│ ├── train.py
│ ├── utils.py
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
├── setup.py
└── ...
- .github/: GitHub 配置文件目录。
- configs/: 包含各种环境配置文件。
- logs/: 训练日志存储目录。
- plots/: 训练结果图表存储目录。
- rl_zoo3/: 项目核心代码目录,包含训练、评估和回调等脚本。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖文件。
- setup.py: 项目安装脚本。
2. 项目的启动文件介绍
项目的主要启动文件包括 train.py
和 enjoy.py
:
- train.py: 用于训练强化学习代理。可以通过命令行参数指定环境、算法和其他训练参数。
- enjoy.py: 用于加载预训练的代理并在环境中进行演示。可以通过命令行参数指定预训练模型和环境。
3. 项目的配置文件介绍
项目的配置文件主要位于 configs/
目录下,这些配置文件用于指定不同环境和算法的超参数。配置文件通常采用 YAML 格式,包含以下内容:
- 环境名称: 指定要训练的环境。
- 算法名称: 指定要使用的强化学习算法。
- 超参数: 包含学习率、批量大小、折扣因子等超参数。
例如,一个典型的配置文件可能如下所示:
environment: "CartPole-v1"
algorithm: "PPO"
params:
learning_rate: 0.0003
batch_size: 64
gamma: 0.99
...
通过这些配置文件,用户可以轻松地调整和优化训练过程。
以上是 RL Baselines3 Zoo 项目的基本教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。